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Executive Summary

The Quantum Computational Fluid Dynamics (QCFD) projectis dedicated to establishing an open-access quantum
software framework to address Computational Fluid Dynamics (CFD) challenges present in today’s industry.

As a part of the Work Package 4 (WP4) "Tensor Network simulations", Deliverable D4.1: providesa core set of tensor
network examples and solutions for comparison with benchmark CFD solutions from work package 1. D4.1 is duein

month 21 of the project.

In accordance with the Data Management Plan (DMP), D4.1 follows the FAIR data principles — Findability,
Accessibility, Interoperability, and Reusability — where each dataset is provided with a detailed metadata structure
with unique identifiersand proper documentation, ensuring that the data is notonly easily accessible butalso readily
transferable and reusable. The access to the public is granted by a dedicated research data repository (FDR) hosted
at the university of Hamburg (UHH), https://www.fdr.uni-hamburg.de/communities/qcfd/. To facilitate the users
overview, all datasets belonging to the QCFD project will be collected in a QCFD community group on the mentioned

data server.
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1 Introduction

The development of digital computers has enabled Computational Fluid Dynamics (CFD) as an essential tool in
modern fluid dynamics research, substituting traditional semi-analytical methods. This advancement has
significantly increased efficiency in solving fluid dynamics problems resulting in the expansion of the field to more
sophisticated investigations. Similarly, the progress in quantum computers and quantum algorithms offers the
potential for another revolutionary transformation in tackling fluid mechanics challenges. Therefore, this deliverable
aims to prepare and benchmark quantum-inspired methods for CFD problems to quantitatively assess their
potential.

The data aims to assess the quality, accuracy and efficiency of tensor network methods, which can readily be
converted into quantum algorithms, by applying them to problems that have been identified in WP1 and WP2 of the
project. These results are often directly comparable to classical CFD methods which are also provided, where
appropriate. To this end, a representative selection of core tensor network cases is designed and provided in this
deliverable, ensuring its scientific and industrial relevance.

Dataset-specific documentation to support the interpretation and outline the usability of the data is given.
Furthermore, the datasets are accompanied by metadata, including parameters, software versions, library
dependencies, and simulation time frames. Lastly, the data sets are enhanced by a keyword-based search system
incorporating Digital Object Identifiers (DOIs). With this documentation process, we intend to guarantee the
replication of our (and other) methods and promote accessibility to the scientific and industrial sectors.

The complete data is made available, according to the submitted Data Management strategy, in adedicated research
data repository (FDR) hosted at the University of Hamburg (UHH), www.fdr.uni-hamburg.de/communities/qcfd/,
and associated within the project community QCFD.

2 Fundamentals of Data Description

We follow the same process and notation as for deliverable D1.1 and provide its description here again. We define
the fundamental data processing pipeline, the quality/accuracy requirements, and the performance indicators, e.g.,
fail/pass criteria. This section's scope is to secure data quality.

The overall goal of QCFD is to combine the computational resources of quantum hardware with CFD industrial
applications. To this end, established CFD tools, that have proven to display good agreement with the underlying
physical phenomena, are used as benchmark (verification) examples for the algorithmic transition from classical to
the quantum frameworks.

To highlight the application relevance, the document distinguishes between scientific and industrial motivation. Each
example case holds a simplified categorization which transits between industrial and scientific relevance, cf. Figure

1.
Industrial - Scientific

FIGURE 1: APPLICATION INDICATOR SLIDER

2.1 Accuracy
Data accuracy is fundamental for expressive and trustful benchmarking and is therefore also a key aspect of this
deliverable D1.1. In this regard, the employed guidelines are given next:

e List of file formats with the corresponding accuracy, accessible without compression
o Fortran std file format
o .hdf5
o .CSV
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e Double-precision floating-point number format

e For complex numbers, the 53-bit significant precision of 16 decimal digits is divided between real and
imaginary parts.

2.2 Assessment Criteria

e Absolute Error: Measure of the deviation between two paired variables.

e L2-(or Euclidean) Norm: In general, a norm consists of a function mapping from a vector space to a non-
negative real number. In particular, the L2-norm is defined as the square root of the scalar product of a
vector with itself.

e  Fidelity: Often understood as a similarity measure and formed by the scalar product of two normalized
vectors.

e Trace Distance: Measure of how distinguishable two (quantum) states are. For pure quantum states, the
trace distance is defined as the square root of one minus fidelity, i.e. the square root of the difference
between one and the fidelity.

3 Cases

This section contains a complete set of core CFD problems investigated using tensor networks and constitutes the
QCFD deliverable D4.1. Considering the landscape of CFD problems and to cover different branches of the (Q)CFD,
we have chosen several cases as representative of each branch to be tested by our tensor networks methods. We
have categorized these problems based on the spatial dimensions of the selected problem. Therefore, we have 1D
(textbook) cases and 2D problems. Each category is split into subsections containing differentbenchmarks which are
uniquely identified by an individual DOI.

In what follows, we have neglected the flow compressibility since Mach numbers are small, Ma < 0.1, where the
Mach number Ma = u/a correspondsto the ratio between flow speed u and the speed of sound a. We have used

non-dimensional parameters for our studies, in particular the Reynolds number
inertial force

Re=ulLfy=——""7—

viscous force

where u is the characteristic velocity, L the characteristic length, v the viscosity.

The Nusselt number

hL  convective heat transfer
Nu=—-—= ;
k conductive heat transfer

where h is the heat transfer coefficient, L is the characteristic length, and k is the thermal conductivity.

The Peclet number is defined as

ul  advection transport

Pe =

D diffusive transport -
Here, u is again the characteristic velocity, L the characteristic length, and D the diffusivity.

Additionally, the properties of the numerical solver are quantified by the Courant-numbers also known as CFL
numbers C, = uAt/Ax for convection and C, = vAt/Ax? for diffusion. Here At is a time step and Ax the spatial
discretization step. A restriction is imposed using the ratio between the temporal and spatial discretization to obtain
stable explicit time marching computations. It should be noted that in what follows, we conduct our studies with
different boundary conditions. The boundary settings include the combinations of Dirichlet-Dirichlet, Neumann-
Neumann, Dirichlet-Neumann, Robin-Robin, and periodic boundary conditions on the left-right boundary which are
given in Table 1.
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TABLE 1: BOUNDARY SETTINGS USED IN OUR STUDIES

Boundary Setting Condition
Dirichlet — Dirichlet y(0) = a
y(1) =b
Neumann - Neumann
6y/
ox =0 = a
d
y/ax le=a =D
Dirichlet - Neumann y(0) = a
a
y/ax == b
Robin - Robin
ay(0) + ay/ax lieo =c¢
d
by + /g ey = ¢
Periodic

y(0) = y(1)

3.1 1D Textbook Case: Burgers Equation

Industrial . Scientific

This first category refers to 1D textbook cases. Here, we are interested in using the tensor network approach for

representing fluid flows in Variational Quantum Algorithms (VQAs) to solve the Burgers equation. In the previous
work package deliverable D1.1, we showed VQA methods can be employed to study problems such as Burgers
equation which resulted in the publication of two papers namely (Jaksch, Givi, Daley, & Rung, 2023) and (Over, et
al., 2024). In what follows, a detailed case description for the corresponding numerical experiments is given in each
subsection. Note that the density p and the viscosity v are both setto 1.

The 1D Burgers equation is a non-linear differential equation that considers convective influences, i.e., Pe # 0. The
equation is often used as a simplified model and has applications in areas such as shock waves, turbulence, and
traffic flow. The simulation of the 1D Burgers equation with variational quantum algorithms and the study of
different ansatz techniques was carried out. All studies employ an initial Dirac velocity distribution u,,,, =
20m m/s) at t = 0Os. The evolution over the time horizon from 0 — 4s is exemplarily depicted in Figure 2.
Simulations were performed within a Master Thesis on Variational quantum algorithms for Re = u,,,,L/v =
[200m — 200007] , with the viscosity v in [0.1,0.01,0.001][m?/s].
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FIGURE 2: RESULTS FOR THE 1D BURGERS EQUATION

To show the translatability of the tensor network approach in variational quantum algorithms, we have produced
random MPS with different bond dimensions y, different ansatzes, and different ansatz depths with variational
quantum networks. The behavior of the achieved fidelity between the original MPS state and the quantum state was
investigated.

To generate the random MPS, we decomposed random vectorsto MPS and truncated the required bond dimension.
We observed the expected behavior where the fidelity increases with the number of layers and thus observing the
expressibility of the ansatz. We have depicted this for eight qubits and different bond dimensions y in Figure 2. It
should be noted that representing MPS of higher bond dimensions requires deeper ansatzes.

8 qubits compact
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FIGURE 3: RESULTS FOR THE GENERATION OF RANDOM MPS WITH VARIATIONAL QUANTUM NETWORKS. THE FIDELITY
INCREASES WITH AN INCREASING NUMBER OF LAYERS AND THUS THE EXPRESSIBILITY OF THE ANSATZES

Furthermore, we investigated the optimum generation of different MPS for each of the different ansatzes. Figure 2
shows how the achievable fidelity for two different ansatzes and two differentbond dimensions develops with the
number of CNOT layers for 8 qubits. The compact ansatz, which always entangles neighboring qubits, was compared
with the shuffle ansatz, which entangles qubits at differentdistances of powers of 2. It was found that the ‘compact’
ansatzes represent smaller bond dimensions better and the ‘shuffle’ ansatz represents higher bond dimensions
better. The results are given in Figure 23.
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FIGURE 4: COMPARISON OF DIFFERENT ANSATZES FOR GENERATING MPS STATES OF DIFFERENT BOND DIMENSIONS. THE
‘COMPACT' ANSATZ REPRESENTS SMALLER BOND DIMENSIONS, AND THE ‘SHUFFLE’ ANSATZ REPRESENTS HIGHER BOND
DIMENSIONS BETTER

Access to the data is provided under DOI 10.25592/uhhfdm.14232.

3.2 2D Problems

In this section, we are concerned with 2D spatial problems and treat them with tensor network algorithms. Itincludes
the propagation of a point source with non-reflective boundaries, simulations of the Lid-driven and Doubly-driven
cavity and scalar transport in not-rectangular domains.

3.2.1 2D Point-Source Propagation

Industrial . Scientific

This problem setting is motivated by the need to investigate the noise propagation of an airplane turbine on the

environment to estimate the noise levels on surrounding residents. The dynamics is governed by linearized Euler
equations for inviscid fluids

dp  _ 2 ou v B 78_'[) -
o = (f)z: + Z)-y) Woe T /@0,
du 19p _Ou

ot pox ox’

c')_? 1dp v

ot poy ox’

where p is the pressure field fluctuation, u (v) is the velocity field fluctuation componentin the x-(y-)direction, p is
the mean density, c is the velocity of source, u is the base flow, considered to be only in the x-direction. The source
to be studied is a sinusoidal point source. Further, we impose non-reflective boundary conditions. For this purpose,
we developed a quantum-inspired analogue of the sponge layers method.

To solve this PDE, we discretize it by means of a staggered grid and finite differences, where spatial derivatives are
discretized with second-order accurate central differences. The time integration is done by a Runge-Kutta 4t order
scheme. As an example, results for a 256 X 256(Nx X Ny)(staggered) grid are shown in Figure 4.

The dataset can be found under DOI 10.25592/uhhfdm.14459.
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FIGURE 4: RESULTS FOR THE 2D NOISE PROPAGATION WITH POINT-SOURCE AND NO BASE FLOW

To conduct a scaling analysis of our tensor network algorithm for the 2D noise propagation problem, we ran
preliminary simulations with different bond dimensions and numbers of qubits. For this purpose, we ran simulations
with varying bond dimensions and numbers of qubits n per dimension, measuring the computational time required
to complete 100 steps using 4t order Runge-Kutta integration method. To ensure validity, the timer starts as soon
as the central tensor reaches the specified maximum permitted bond dimension. Hence, initial steps where the MPS
has not yet built up any entanglement are prevented from corrupting the results. Once this condition is met, the
computational time should scale with the most expensive operation. The results are shown in Figure 6. We observe
that the CPU time, plotted on a logarithmic scale, does not increase linearly with the bond dimension or the grid
size. This suggests that an exponential relationship between the CPU time and grid size, as expected in a direct
numerical simulation, can be ruled out. Instead, the CPU time appears to exhibit sublinear growth as the maximum

permitted bond dimension increases.
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Figure 5: Results for the scaling analysis of the tensor network algorithm on the 2D noise propagation without
base flow

3.2.2 Lid-driven and Doubly-Driven Cavity

The setup for the lid-driven cavity in two spatial dimensions is shown in Figure 6. We consider a square box with
edge length L, and the upper lid moves with velocity u, in x-direction. The x-component (y-component) of the fluid
is denoted by u(v). At t = 0s, the fluid is at rest,u =v =0 m/s. We consider a viscous fluid with kinematic
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viscosity v and seek solutions to the incompressible Navier-Stokes equations in the stream-function-vorticity
approach.

We scale time in units of t, = L/u,, length in terms of L and velocities by u,. Solutions to the Navier-Stokes
equations are then characterized by the Reynolds number Re = u,L/v. We discretize the interior of the cavity
(excluding boundaries) by a uniform grid with K grid points in each spatial dimension. The computational domain
thus comprises K% equally spaced points with grid spacingh = L/(K + 1). The boundary conditions for u, v, and
the stream function ¥ and for the lid-driven cavity are shown in Figure 6(b). In the case of the doubly-driven cavity,
the upper lid continues to move at constant velocity u, in the x-direction. In addition, the bottom lid moves at a
constant velocity -u, in the x direction. The corresponding boundary conditions are specified in Figure 6(c).

We introduce a tensor network algorithm for solving the lid-driven and doubly-driven cavities in (Kiffner & Jaksch,
2023). We represent the velocity components by matrix product states and find that the bond dimension grows
logarithmically with simulation time. The tensor network algorithm requires at most a few percent of the number of
variables parametrizing the solution obtained by direct numerical simulation, and approximately improves the
runtime by an order of magnitude compared to direct numerical simulation on similar hardware.

In (Kiffner & Jaksch, 2023), we present a general framework for dealing with typical CFD boundary conditions in a
tensor network approach. This includes a strategy for dealing with ghost points at the boundaries and the
development of matrix product operators adapted to moving and fixed walls. In this way, we show that the tensor
network approach can be generalized to more complex flow geometries.

The dataset can be accessed via DOI 10.25592/uhhfdm.14236.

(a) (b)

c, ug |G lc e |a|
0 0|0

G Cr

L )
U Uq 0 —Up 0
c, vfo]lo] o o

FIGURE 6: LID-DRIVEN AND DOUBLY-DRIVEN CAVITY

3.2.3 Scalar Transport in Non-Rectangular Domains

Industrial - Scientific

In the following, we study transport in non-rectangular domains. In the first case, we focus on a passive scalar
transport equation d,¢ = —1i - V¢p + I'V2¢ for a fixed velocity &’ = 0.5[cos(a) , sin(a)]7[m/s]. The angle « of the
velocity is chosen to be [0°,45°,90°,140°]. The Reynolds number in the computational domain reads Re = uL /T =
20007, based on the length L = 2m of the (computational) domain, the velocity magnitude u = 0.5 [m/s] and a
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D

constant diffusion coefficientI' = 0.002. We employ a tensor network representation for the differential operators,
along with a corresponding relation to capture the metric terms between physical (non-rectangular) and
computational (rectangular) domain. The computational domain is a square & € [0,L] x € [0,L], whereby the
physical domain is describedby x = & —a sin(é —n)and y =n — asin(é —n). Discretization of the problem
is done by using a central finite differencesapproximation for all transport derivatives and all metric derivatives on
a grid with 64 X 64 discrete points. It should be noted that discrete points are equidistantly distributed in the
computational domain. The evolution of the time horizon takes place from0Os to 10s. We use constant time steps of
At = 0.05s alongside of a first-order explicit scheme conserving a Courant Number of €,=1.0 to discretize time
derivatives. We investigate the evolution of an initial Gaussian pulse

(x—x)%+ (y - y0)2>
B

d(x,ty) = Aexp (

with A = 1.0, B = 0.2, and x, = m,y, = m, propagating in a physical domain with periodic boundary conditions.
The results of the simulation with the prescribed velocity at @ = 140° is given in Figure .

(a) (b)
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FIGURE 8: SNAPSHOTS OF THE SCALAR FIELD FOR THE GAUSSIAN PULSE EVOLUTION WITH PRESCRIBED VELOCITY AT @ = 140°
FOR 0.1s (A) AND 0.3s (B).

Next, Navier Stokes simulations have been used to extend the application of tensor network methods to curvilinear
geometries. A fluid viscosity v = 0.001m?/s was employed for the simulation and using Large-Eddy Simulations
(LES) and a Smagorinsky model, a spatially variable viscosity was obtained (c; = 0.15). The pressure was computed
via solving an additional Poisson equation with a pressure projection approach. The physical domain is the same as
in the case described in Figure . The time horizon spans 0s to 10s which is discretized using an explicit 4" order
Runge-Kutta scheme. We restrict the dynamic time step to maintain a small Courant number well below 1. The
periodic boundary conditions in the horizontal-direction and zero Dirichlet boundary conditions in the vertical-
direction were used for the simulation. A parabolic horizontal velocity profile along the n-axis of the domain was
considered as an initial condition. The maximum initial velocity u,,,, was obtained at the channel centerline, given
by the profile u(n) = —1/m%n (n — 2m). The corresponding similarity parameter was obtained as U, L/v ~
6200 . For the {-component of the velocity v (1, {), zeroinitial velocity is considered. Figure 7 displays the results of
the study for the velocity (a), pressure (b) and the divergence of the velocity (c).

The related data to the simulation can be found in DOI 10.25592/uhhfdm.14264.
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FIGURE 7: VELOCITY PROFILE, PRESSURE AND DIVERGENCE OF THE VELOCITY
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