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Executive Summary 

The Quantum Computational Fluid Dynamics (QCFD) project is dedicated to establishing an open -access quantum 

software framework to address Computational Fluid Dynamics (CFD) challenges present in today’s industry.  

As a part of the Work Package 4 (WP4) "Tensor Network simulations", Deliverable D4.1: provides a core set of tensor 

network examples and solutions for comparison with benchmark CFD solutions from work package 1.  D4.1 is due in 

month 21 of the project.  

In accordance with the Data Management Plan (DMP), D4.1 follows the FAIR data principles – Findability, 

Accessibility, Interoperability, and Reusability – where each dataset is provided with a detailed metadata structure 

with unique identifiers and proper documentation, ensuring that the data is not only easily accessible but also readily 

transferable and reusable. The access to the public is granted by a dedicated research data repository (FDR) hosted 

at the university of Hamburg (UHH), https://www.fdr.uni-hamburg.de/communities/qcfd/. To facilitate the users 

overview, all datasets belonging to the QCFD project will be collected in a QCFD community group on the mentioned 

data server. 
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1 Introduction 
The development of digital computers has enabled Computational Fluid Dynamics (CFD) as an essential tool in 

modern fluid dynamics research, substituting traditional semi-analytical methods. This advancement has 

significantly increased efficiency in solving fluid dynamics problems resulting in the expansion of the field to more 

sophisticated investigations. Similarly, the progress in quantum computers and quantum algorithms offers the 

potential for another revolutionary transformation in tackling fluid mechanics challenges. Therefore, this deliverable 

aims to prepare and benchmark quantum-inspired methods for CFD problems to quantitatively assess their 

potential. 

The data aims to assess the quality, accuracy and efficiency of tensor network methods, which can readily be 

converted into quantum algorithms, by applying them to problems that have been identified in WP1 and WP2 of the 

project. These results are often directly comparable to classical CFD methods which are also provided, where 

appropriate. To this end, a representative selection of core tensor network cases is designed and provided in this 

deliverable, ensuring its scientific and industrial relevance. 

Dataset-specific documentation to support the interpretation and outline the usability of the data is given. 

Furthermore, the datasets are accompanied by metadata, including parameters, software versions, library 

dependencies, and simulation time frames. Lastly, the data sets are enhanced by a keyword-based search system 

incorporating Digital Object Identifiers (DOIs). With this documentation process, we intend to guarantee the 

replication of our (and other) methods and promote accessibility to the scientific and industrial sectors. 

The complete data is made available, according to the submitted Data Management strategy, in a dedicated research 

data repository (FDR) hosted at the University of Hamburg (UHH), www.fdr.uni-hamburg.de/communities/qc fd/ , 

and associated within the project community QCFD. 

2 Fundamentals of Data Description  
We follow the same process and notation as for deliverable D1.1 and provide its description here again. We define 

the fundamental data processing pipeline, the quality/accuracy requirements, and the performance indicators, e.g., 

fail/pass criteria. This section's scope is to secure data quality. 

The overall goal of QCFD is to combine the computational resources of quantum hardware with CFD industrial 

applications. To this end, established CFD tools, that have proven to display good agreement with the underlying 

physical phenomena, are used as benchmark (verification) examples for the algorithmic transition from classical to 

the quantum frameworks. 

To highlight the application relevance, the document distinguishes between scientific and industrial motivation. Each 

example case holds a simplified categorization which transits between industrial and scientific relevance, cf. Figure 

1. 

  

FIGURE 1: APPLICATION INDICATOR SLIDER 

2.1 Accuracy 
Data accuracy is fundamental for expressive and trustful benchmarking and is therefore also a key aspect of this 

deliverable D1.1. In this regard, the employed guidelines are given next: 

• List of file formats with the corresponding accuracy, accessible without compression 

▫ Fortran std file format 

▫ .hdf5 

▫ .csv 

Industrial  Scientific 
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• Double-precision floating-point number format 

• For complex numbers, the 53-bit significant precision of 16 decimal digits is divided between real and 

imaginary parts.  

2.2 Assessment Criteria  
• Absolute Error: Measure of the deviation between two paired variables. 

• L2-(or Euclidean) Norm: In general, a norm consists of a function mapping from a vector space to a non-

negative real number. In particular, the L2-norm is defined as the square root of the scalar product of a 

vector with itself. 

• Fidelity: Often understood as a similarity measure and formed by the scalar product of two normalized 

vectors. 

• Trace Distance: Measure of how distinguishable two (quantum) states are. For pure quantum states, the 

trace distance is defined as the square root of one minus fidelity, i.e. the square root of the difference 

between one and the fidelity. 

3 Cases 
This section contains a complete set of core CFD problems investigated using tensor networks and constitutes the 

QCFD deliverable D4.1. Considering the landscape of CFD problems and to cover different branches of the (Q)CFD, 

we have chosen several cases as representative of each branch to be tested by our tensor networks methods. We 

have categorized these problems based on the spatial dimensions of the selected problem. Therefore, we have 1D 

(textbook) cases and 2D problems. Each category is split into subsections containing different benchmarks which are 

uniquely identified by an individual DOI.  

In what follows, we have neglected the flow compressibility since Mach numbers are small, Ma <  0.1, where the 

Mach number Ma = 𝑢/𝑎 corresponds to the ratio between flow speed u and the speed of sound a. We have used 

non-dimensional parameters for our studies, in particular the Reynolds number  

𝑅𝑒 = 𝑢𝐿/𝜈 =
inertial force

viscous force 
 

where 𝑢 is the characteristic velocity, 𝐿 the characteristic length, 𝜈 the viscosity.  

The Nusselt number  

𝑁𝑢 =
ℎ𝐿

𝑘
=

convective heat  transfer

conductive heat transfer
 

where ℎ is the heat transfer coefficient, 𝐿 is the characteristic length, and 𝑘 is the thermal conductivity. 

The Peclet number is defined as  

𝑃𝑒 =
𝑢𝐿

𝐷
=

advection transport

diffusive transport
. 

Here, 𝑢 is again the characteristic velocity, 𝐿 the characteristic length, and 𝐷  the diffusivity.  

Additionally, the properties of the numerical solver are quantified by the Courant-numbers also known as CFL 

numbers 𝐶𝑐 = 𝑢Δ𝑡/Δ𝑥 for convection and 𝐶𝑑 = 𝜈Δ𝑡/Δ𝑥2 for diffusion. Here Δ𝑡 is a time step and Δ𝑥 the spatial 

discretization step. A restriction is imposed using the ratio between the temporal and spatial discretization to obtain 

stable explicit time marching computations. It should be noted that in what follows, we conduct our studies with 

different boundary conditions. The boundary settings include the combinations of Dirichlet-Dirichlet, Neumann-

Neumann, Dirichlet-Neumann, Robin-Robin, and periodic boundary conditions on the left-right boundary which are 

given in Table 1. 
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TABLE 1: BOUNDARY SETTINGS USED IN OUR STUDIES 

 

3.1 1D Textbook Case: Burgers Equation 

 

This first category refers to 1D textbook cases. Here, we are interested in using the tensor network approach for 

representing fluid flows in Variational Quantum Algorithms (VQAs) to solve the Burgers equation. In the previous 

work package deliverable D1.1, we showed VQA methods can be employed to study problems such as Burgers 

equation which resulted in the publication of two papers namely (Jaksch, Givi, Daley, & Rung, 2023) and (Over, et 

al., 2024). In what follows, a detailed case description for the corresponding numerical experiments is given in each 

subsection. Note that the density 𝜌 and the viscosity 𝜈 are both set to 1. 

The 1D Burgers equation is a non-linear differential equation that considers convective influences, i.e., 𝑃𝑒 ≠ 0. The 

equation is often used as a simplified model and has applications in areas such as shock waves, turbulence, and 

traffic flow. The simulation of the 1D Burgers equation with variational quantum algorithms and the study of 

different ansatz techniques was carried out. All studies employ an initial Dirac velocity distribution 𝑢𝑚𝑎𝑥 =

20𝜋 𝑚/𝑠)  at 𝑡 =  0𝑠 . The evolution over the time horizon from 0 − 4s  is exemplarily depicted in Figure 2. 

Simulations were performed within a Master Thesis on Variational quantum algorithms fo r 𝑅𝑒 = 𝑢𝑚𝑎𝑥𝐿/𝜈 =
[200𝜋 − 20000𝜋]  ,  with the viscosity 𝜈 in [0.1, 0.01,0.001][𝑚2/𝑠] . 

Boundary Setting Condition 

Dirichlet – Dirichlet 
𝑦(0) = 𝑎 

𝑦(1) = 𝑏 

Neumann - Neumann 𝜕𝑦
𝜕𝑥

⁄ |
𝑥=0 = 𝑎 

𝜕𝑦
𝜕𝑥

⁄ |
𝑥=1 = 𝑏 

Dirichlet - Neumann 
𝑦(0) = 𝑎 

𝜕𝑦
𝜕𝑥

⁄ |
𝑥=1 = 𝑏 

Robin - Robin 
𝑎𝑦(0) +

𝜕𝑦
𝜕𝑥

⁄ |
𝑥=0 = 𝑐  

𝑏𝑦(1) +
𝜕𝑦

𝜕𝑥
⁄ |

𝑥=1 = 𝑐 

Periodic 
𝑦(0) = 𝑦(1) 

Industrial Scientific 



 

This project receives funding from the European Union's Horizon 2020 HORIZON Research and 
Innovation Actions Programme under Grant Agreement #101080085 Rev:0, Page 9 of 14 

 

FIGURE 2: RESULTS FOR THE 1D BURGERS EQUATION 

To show the translatability of the tensor network approach in variational quantum algorithms, we have produced 

random MPS with different bond dimensions 𝜒, different ansatzes, and different ansatz depths with variational 

quantum networks. The behavior of the achieved fidelity between the original MPS state and the quantum state was 

investigated. 

To generate the random MPS, we decomposed random vectors to MPS and truncated the required bond dimension. 

We observed the expected behavior where the fidelity increases with the number of layers and thus observing the 

expressibility of the ansatz. We have depicted this for eight qubits and different bond dimensions 𝜒 in Figure 2. It 

should be noted that representing MPS of higher bond dimensions requires deeper ansatzes. 

 

 

FIGURE 3: RESULTS FOR THE GENERATION OF RANDOM MPS WITH VARIATIONAL QUANTUM NETWORKS. THE FIDELITY 

INCREASES WITH AN INCREASING NUMBER OF LAYERS AND THUS THE EXPRESSIBILITY OF THE ANSATZES 

Furthermore, we investigated the optimum generation of different MPS for each of the different ansatzes. Figure 2 

shows how the achievable fidelity for two different ansatzes and two different bond dimensions develops with the 

number of CNOT layers for 8 qubits. The compact ansatz, which always entangles neighboring qubits, was compared 

with the shuffle ansatz, which entangles qubits at different distances of powers of 2. It was found that the ‘compact’ 

ansatzes represent smaller bond dimensions better and the ‘shuffle’ ansatz represents higher bond dimensions 

better. The results are given in Figure 23. 
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FIGURE 4: COMPARISON OF DIFFERENT ANSATZES FOR GENERATING MPS STATES OF DIFFERENT BOND DIMENSIONS. THE 

‘COMPACT’ ANSATZ REPRESENTS SMALLER BOND DIMENSIONS, AND THE ‘SHUFFLE’ ANSATZ REPRESENTS HIGHER BOND 

DIMENSIONS BETTER 

Access to the data is provided under DOI 10.25592/uhhfdm.14232. 

3.2 2D Problems 
In this section, we are concerned with 2D spatial problems and treat them with tensor network algorithms. It includes 

the propagation of a point source with non-reflective boundaries, simulations of the Lid-driven and Doubly-driven 

cavity and scalar transport in not-rectangular domains. 

 

3.2.1 2D Point-Source Propagation 
 

 

This problem setting is motivated by the need to investigate the noise propagation of an airplane turbine on the 

environment to estimate the noise levels on surrounding residents. The dynamics is governed by linearized Euler 

equations for inviscid fluids 

 

where 𝑝 is the pressure field fluctuation, 𝑢 (𝑣) is the velocity field fluctuation component in the 𝑥-(𝑦-)direction, 𝜌 is 

the mean density, 𝑐  is the velocity of source, 𝑢 is the base flow, considered to be only in the 𝑥-direction. The source 

to be studied is a sinusoidal point source. Further, we impose non-reflective boundary conditions. For this purpose, 

we developed a quantum-inspired analogue of the sponge layers method. 

To solve this PDE, we discretize it by means of a staggered grid and finite differences, where spatial derivatives are 

discretized with second-order accurate central differences. The time integration is done by a Runge-Kutta 4th order 

scheme. As an example, results for a 256 × 256(𝑁𝑥 × 𝑁𝑦)(staggered) grid are shown in Figure 4.  

The dataset can be found under DOI 10.25592/uhhfdm.14459. 

Industrial Scientific 
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FIGURE 4: RESULTS FOR THE 2D NOISE PROPAGATION WITH POINT-SOURCE AND NO BASE FLOW 

 

To conduct a scaling analysis of our tensor network algorithm for the 2D noise propagation problem,  we ran 

preliminary simulations with different bond dimensions and numbers of qubits. For this purpose, we ran simulations 

with varying bond dimensions and numbers of qubits 𝑛 per dimension, measuring the computational time required 

to complete 100 steps using 4th order Runge-Kutta integration method. To ensure validity, the timer starts as soon 

as the central tensor reaches the specified maximum permitted bond dimension. Hence, initial steps where the MPS 

has not yet built up any entanglement are prevented from corrupting the results. Once this condition is met, the 

computational time should scale with the most expensive operation. The results are shown in F igure 6. We observe 

that the CPU time, plotted on a logarithmic scale, does not increase linearly with the bond dimension  or the grid 

size. This suggests that an exponential relationship between the CPU time and grid size, as expected in a direct 

numerical simulation, can be ruled out. Instead, the CPU time appears to exhibit sublinear growth as the maximum 

permitted bond dimension increases. 

 

 

Figure 5: Results for the scaling analysis of the tensor network algorithm on the 2D noise propagation without 

base flow 

 

3.2.2 Lid-driven and Doubly-Driven Cavity 
 

 

The setup for the lid-driven cavity in two spatial dimensions is shown in Figure 6. We consider a square box with 

edge length 𝐿, and the upper lid moves with velocity 𝑢0 in x-direction. The x-component (y-component) of the fluid 

is denoted by 𝑢(𝑣) . At 𝑡 = 0𝑠 , the fluid is at rest , 𝑢 = 𝑣 = 0 𝑚/𝑠 . We consider a viscous fluid with kinematic 

Industrial  Scientific 
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viscosity 𝜈  and seek solutions to the incompressible Navier-Stokes equations in the stream-function-vorticity 

approach. 

We scale time in units of 𝑡0 = 𝐿/𝑢0, length in terms of 𝐿  and velocities by 𝑢0 . Solutions to the Navier-Stokes 

equations are then characterized by the Reynolds number 𝑅𝑒  =  𝑢0𝐿/𝜈. We discretize the interior of the cavity 

(excluding boundaries) by a uniform grid with 𝐾  grid points in each spatial dimension. The computational domain 

thus comprises 𝐾2  equally spaced points with grid spacing ℎ =  𝐿/(𝐾 +  1). The boundary conditions for 𝑢, 𝑣, and 

the stream function 𝜓 and for the lid-driven cavity are shown in Figure 6(b). In the case of the doubly-driven cavity, 

the upper lid continues to move at constant velocity 𝑢0 in the x-direction. In addition, the bottom lid moves at a 

constant velocity -𝑢0 in the x direction. The corresponding boundary conditions are specified in Figure 6(c).  

We introduce a tensor network algorithm for solving the lid-driven and doubly-driven cavities in (Kiffner & Jaksch, 

2023). We represent the velocity components by matrix product states and find that the bond dimension grows 

logarithmically with simulation time. The tensor network algorithm requires at most a few percent of the number of 

variables parametrizing the solution obtained by direct numerical simulation, and approximately improves the 

runtime by an order of magnitude compared to direct numerical simulation on similar hardware. 

In (Kiffner & Jaksch, 2023), we present a general framework for dealing with typical CFD boundary conditions in a 

tensor network approach. This includes a strategy for dealing with ghost points at the boundaries and the 

development of matrix product operators adapted to moving and fixed walls. In this way, we show that the tensor 

network approach can be generalized to more complex flow geometries.  

The dataset can be accessed via DOI 10.25592/uhhfdm.14236. 

 

FIGURE 6: LID-DRIVEN AND DOUBLY-DRIVEN CAVITY 

 

3.2.3 Scalar Transport in Non-Rectangular Domains 
  

 

In the following, we study transport in non-rectangular domains. In the first case, we focus on a passive scalar 

transport equation 𝜕𝑡 𝜙 = −𝑢⃗ ⋅ ∇𝜙 + Γ∇2𝜙 for a fixed velocity 𝑢 ⃗⃗⃗  = 0.5[cos(𝛼) , sin(𝛼)]𝑇 [𝑚/𝑠]. The angle 𝛼 of the 

velocity is chosen to be [0°,45°,90°,140°]. The Reynolds number in the computational domain reads 𝑅𝑒 = 𝑢𝐿/Γ =

2000𝜋 , based on the length 𝐿 = 2𝜋 of the (computational) domain, the velocity magnitude 𝑢 = 0.5 [𝑚/𝑠] and a 
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constant diffusion coefficient Γ = 0.002. We employ a tensor network representation for the differential operators, 

along with a corresponding relation to capture the metric terms between physical (non -rectangular) and 

computational (rectangular) domain. The computational domain is a square 𝜉 ∈ [0, 𝐿] × 𝜂 ∈ [0, 𝐿], whereby the 

physical domain is described by 𝑥 = 𝜉 − 𝛼 𝑠𝑖𝑛(𝜉 − 𝜂) and 𝑦 = 𝜂 − 𝛼 𝑠𝑖𝑛(𝜉  − 𝜂). Discretization of the problem 

is done by using a central finite differences approximation for all transport derivatives and all metric derivatives on 

a grid with 64 ×  64 discrete points. It should be noted that discrete points are equidistantly distributed in the 

computational domain. The evolution of the time horizon takes place from0𝑠  to 10𝑠 . We use constant time steps of 

Δ𝑡 = 0.05𝑠  alongside of a first-order explicit scheme conserving a Courant Number of 𝐶𝑐=1.0 to discretize time 

derivatives. We investigate the evolution of an initial Gaussian pulse  

𝜙(𝑥, 𝑡0) = 𝐴 exp (
(𝑥 − 𝑥0

)2 + (𝑦 − 𝑦0
)2

𝐵
) 

with 𝐴 = 1.0, 𝐵 = 0.2, and 𝑥0 = 𝜋, 𝑦0 = 𝜋 , propagating in a physical domain with periodic boundary conditions. 

The results of the simulation with the prescribed velocity at 𝛼 = 140°  is given in Figure . 

 

FIGURE 8: SNAPSHOTS OF THE SCALAR FIELD FOR THE GAUSSIAN PULSE EVOLUTION WITH PRESCRIBED VELOCITY AT 𝜶 = 𝟏𝟒𝟎° 
FOR 0.1S (A) AND 0.3S (B). 

Next, Navier Stokes simulations have been used to extend the application of tensor network methods to curvilinear 

geometries. A fluid viscosity 𝜈 = 0.001𝑚2/𝑠 was employed for the simulation and using Large-Eddy Simulations 

(LES) and a Smagorinsky model, a spatially variable viscosity was obtained (𝑐𝑠 = 0.15). The pressure was computed 

via solving an additional Poisson equation with a pressure projection approach. The physical domain is the same as 

in the case described in Figure . The time horizon spans 0s to 10𝑠  which is discretized using an explicit 4th order 

Runge-Kutta scheme. We restrict the dynamic time step to maintain a small Courant number well below 1. The 

periodic boundary conditions in the horizontal-direction and zero Dirichlet boundary conditions in the vertical-

direction were used for the simulation. A parabolic horizontal velocity profile along the 𝜂-axis of the domain was 

considered as an initial condition. The maximum initial velocity 𝑢𝑚𝑎𝑥  was obtained at the channel centerline, given 

by the profile 𝑢(𝜂) =  −1/𝜋2𝜂 (𝜂 − 2𝜋). The corresponding similarity parameter was obtained as 𝑢𝑚𝑎𝑥𝐿/𝜈 ≈

6200 . For the 𝜁-component of the velocity 𝑣(𝜂, 𝜁), zero initial velocity is considered. Figure 7 displays the results of 

the study for the velocity (a), pressure (b) and the divergence of the velocity (c).  

The related data to the simulation can be found in DOI 10.25592/uhhfdm.14264. 
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FIGURE 7: VELOCITY PROFILE, PRESSURE AND DIVERGENCE OF THE VELOCITY 
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