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1 Executive Summary

The Quantum Computational Fluid Dynamics (QCFD) project is dedicated to establishing an open-
access quantum software framework to address Computational Fluid Dynamics (CFD) challenges present
in today’s industry.

As a part of the Work Package 6 (WP6) ”Gate-Level simulations”, Deliverable D6.1 provides a core
set of “small benchmark” examples of solutions computed with quantum circuit gate-level simulations.
These problems are simplified to be able to run on current and short term capabilities of quantum
computers, and provide a basis for comparison with benchmark CFD solutions from work packages 1
and 4.

In accordance with the Data Management Plan (DMP), D6.1 follows the FAIR data principles – Find-
ability, Accessibility, Interoperability, and Reusability – where each dataset is provided with a detailed
metadata structure with unique identifiers and proper documentation, ensuring that the data is not only
easily accessible but also readily transferable and reusable. The access to the public is granted by a dedi-
cated research data repository (FDR) hosted at the university of Hamburg (UHH), https://www.fdr.uni-
hamburg.de/communities/qcfd/. To facilitate the users overview, all datasets belonging to the QCFD
project, namely those from this report (which include 10.25592/uhhfdm.14123, 10.25592/uhhfdm.16129,
10.25592/uhhfdm.16108, and 10.25592/uhhfdm.16108), are collected in a QCFD community group on
the mentioned data server.
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2 Introduction

Solving numerically differential equations is at the heart of science and engineering because many funda-
mental processes in nature are described by such equations. Examples include the convection-diffusion
process, wave dynamics, fluid dynamics to name a few [1]. The typical approach for solving these equa-
tions is to discretize the solution candidate in position and time and write the derivatives (variations)
using approximate methods such as finite difference and solve the differential equation iteratively [2].
The main problem with this approach relies on the increasing number of resources for simulating these
systems up to a bounded precision, requiring high-parallelization and high-performance computing.

Therefore new computational technologies are required. One possible approach relies on using quan-
tum computers, where it has been proposed that solving algorithms on them may lead to better asymp-
totic scaling, when compared with its classical counterpart [3, 4]. In this framework, we can exploit the
elements from gate-based quantum computation for encoding the required operations (time and spatial
derivative) and variational quantum circuits [5] for engineering adequate candidates (anzätzes) of the
solution. Both problems (operation and anzatz) are mapped to quantum circuits that can be run on
an operative quantum computer. Nowadays, there are a wide range of potential quantum computers
running with a modest number of qubits in the so-called Noise Intermediate-Scale Quantum Computers
(NISQ) [6] from different platform such as photons [7], neutral atoms [8], trapped-ions [9] and supercon-
ducting circuits [10, 11]. Each of them has its own strengths and disadvantages that can exploited to
solve differential equations. For this deliverable, we explore the possibility to encode a set of differential
equations - namely the Schroedinger Non Linear equation, the Heat equation and the Burgers’ equation
- on quantum computers based on Trapped-Ions represented by Quantinuum® simulators and on super-
conducting circuit architectures, modeled by IBM quantum simulators, for different initial conditions.

Figure 1: Representation of a Trapped Ion Computer (a) from [12] and an IBM 127 superconducting
qubits quantum Computers(b) from [11]. As mentioned, whilst the Ion trap allows for all-to-all con-
nectivity, the superconducting computer possesses a limited topology, where only certain connections
between qubits are allowed.

3 Platforms

We discuss the gatesets and models for the two platforms above that are examined in this report.
We used a model of Quantinuum H1 series, that consist of twenty 114Yb+ ions [see Fig. 1(a)], as the

a representative of Ion Traps. The platform uses optical lasers for addressing individual or pairs of these
ions to implement single- two-qubit gates. Moreover, it is possible to address different pairs of ions so that
a two qubit gate can be established between any qubit - it implements all-to-all connectivity [12]. Single-
qubit gates are generated by resonant lasers [13], whereas the two-qubit gates are implemented through
the quantized movement of the ions in the interaction zones [14]. Finally, the readout is performed by
shining the system and measuring the fluorescence spectrum [15]. The native set of gates available in
the processor are the following:

• Single-qubit gates

U1q(θ, ϕ) =

(
cos θ

2 −ie−iϕ sin θ
2

−ieiϕ sin θ
2 cos θ

2

)
, Rz(λ) =

(
e−iλ

2 0

0 ei
λ
2

)
, (1)
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• Two-qubit gate

ZZ =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 , RZZ(θ) =


1 0 0 0
0 eiθ 0 0
0 0 eiθ 0
0 0 0 1

 , (2)

• General SU(4) entangler

R(α, β, γ) =
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)
0 0 e−i γ

2 cos
(
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)

 . (3)

System Fundamentals min typ max
Qubits 20 20 20
Connectivity All-to-all
Parallel two-qubit operations 5 5 5
Errors
Single-qubit gate 1× 10−5 2× 10−5 2× 10−4

Two-qubit gate 8× 10−4 1× 10−3 3× 10−3

State preparation and measurement 2× 10−3 3× 10−3 5× 10−3

Table 1: Specification of the H1 Quantinuum processor.

As expected, the implementation of all these operations together with the readout process are affected
by the unavoidable action of the environment, leading to gate and readout errors summarized in Table 1.

On the other hand, we have analysed the simulated performances of the IBM superconducting quan-
tum processors Sherbrooke. The processor consist of 127 Transmon qubits [16] capacitively connected
to auxiliary resonators on a grid configuration [dark blue lines on Fig. 1(b)]. Unlike the Quantinuum
processor, the IBM architecture does not support all-to-all connectivity. Instead, for performing opera-
tion between distant qubits swap operations are needed, increasing the overhead of the circuit. In this
architecture, both single- and two-qubit operations are implemented by voltage-controlled microwave
drives addressing one [17] or both qubit at the same time [18, 19]. Finally, the readout of the qubit is
performed using an auxiliary resonator so that the measured voltage is proportional to the state of the
qubit [20, 21]. For these architectures, the native set of gates are the following

• Single-qubit gates

√
X =

1

2

(
1 + i 1− i
1− i 1 + i

)
, X =

(
0 1
1 0

)
, RZ(λ) =

(
e−iλ

2 0

0 ei
λ
2

)
. (4)

• Two-qubit gates

ECR =
1√
2


0 0 1 i
0 0 i 1
1 −i 0 0
−i 1 0 0

 (5)

Similar to the Trapped-ion cases, all these operations are affected by the action of the electronic en-
vironment that introduces relaxation, decoherence and crosstalk [22]. The typical errors affecting the
architecture are summarized on Table 2.
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Qubit Readout ID
√
X Pauli-X ECR

0 4.80 2.008 2.008 2.008 1 0:0.0134
1 2.13 3.565 3.565 3.565 1 2:0.0095
2 5.40 2.633 2.633 2.633 1 0:0.0134
3 1.30 2.214 2.214 2.214 3 2:0.0089
4 1.72 1.618 1.618 1.618 4 3:0.0046
5 4.61 2.933 2.933 2.933 5 4:0.0072

Table 2: Error source of the Sherbrooke IBM quantum processor.

4 Gate-level implementation

The idea of this project is to use variational quantum circuits for encoding the solution ansatz and the
operations needed for solving partial differential equations (PDE) on one of the aforementioned quantum
processors. We focus on diffusion and fluid dynamics problems governed by the Heat and the Navier-
Stokes equations, respectively, following the approach developed in Ref. [23] where they propose the
variational quantum circuit depicted in Fig. 2(a) for encoding the velocity field in the amplitudes of
a multi-qubit wave function. Moreover, the gradients, Laplacian and non-linear terms present on the
Navier-Stoke equation are encoded in multi-controlled quantum gates as depicted in Fig. 2(b) so that
each terms of the differential equation are obtained by measuring a master qubit and then optimized to
find the optimal variational parameters. Thus, we aim to decompose these interactions in terms of the
native set available on each quantum processor and compare the advantages/disadvantages for solving
the PDE more efficiently.

The fundamental problem that we may face is the transpilation i.e, how do we decompose the quantum
circuit into the native gate set whilst respecting the connectivity of the quantum processor. In this case,
Quantinuum has the advantages that it is possible to implement all-to-all quantum gates, decreasing the
required number of two-qubit gates making the decomposition shorter. Moreover, the fidelity of these
quantum gates is higher in comparison with its superconducting circuit counterpart. Nevertheless, the
gate time of these quantum gates are longer than in superconducting qubits (µs vs ns) which limits the
number of single-shoot measurements before the decoherence destroy completely the quantum state. On
the other hand, as we have pointed out, superconducting quantum processors are able to implement faster
single- and two-qubit gates, but they are more noisy than in traped-ions and present limited connectivity
[see Fig. 1(b)] so that for implementing multi-controlled operation in an all-to-all fashion, we require a
large number of swap operations that limits the fidelity for the encoding of the solution as well as the
implementation of the finite difference operations. One strength of superconducting processors over the
trapped-ion processor is the larger maximal number of single-shoot measurement, which allows us to
achieve better convergence and even make possible to implement noise mitigation techniques such as
zero noise extrapolation (ZNE) [25]. Thus, for having a better understanding of the detrimental effect
present on the quantum processors, we will perform numerical simulations without and with noise models
to later show the performance of the variational algorithm on real quantum processors.

Figure 2: Variational algorithm to solve non linear problems such as fluid dynamics simulations from
[24]. b) - multi-controlled gates necessary for the algorithm
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5 Data Organization

Following the model of previous reports, we maintain the same guidelines for data accuracy and trans-
parency. Therefore, for each equation analysed we provide the parameters and field obtained at each time
step in easily readable files either in .txt format or .npy format. All data is clearly labeled and indicated
in the appropriate file. All numbers are used with double-precision floating-point number format.

To access the data obtained throughout this report we mainly used 2 criteria: Fidelity - the similarity
measure and formed by the scalar product of two normalized vectors - and the Mean Squared Error
- an average measure of the squared difference between 2 data sets.

6 Nonlinear Schroedinger equation

The nonlinear Schrödinger equation (NLSE) and its variants model various phenomena [26, 27, 28, 29, 30,
31, 32, 33, 34, 35], such as dynamics of light in nonlinear optics [28, 29],

(a)

(b)

(c)

(d)

H H

U(λ)

U(λ)

H H

U(λ)

U(λ)
†

H H

H

U(λ)

V
^
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T
T

T T

†T
†T †T

Figure 3: Design of the quantum circuits used to
measure the (a) potential, (b) interaction, and (c) ki-
netic energies. Here, H is the Hadamard gate, U(λ)
is the quantum ansatz that represents the trial state,
and V̂ is the potential unitary which encodes the
potential function values to the basis states. Here,
we have shown an example of n = 4 (n′ = 13),
which can be generalized to an arbitrary number
of qubits. Panel (d) shows the decomposition of
the Toffoli gate into a sequence of single-qubit gates
and controlled-NOT gates, where T = Rz(π/4) and
T † = Rz(−π/4).

envelope solitons and modulation instabilities in
plasma physics and surface gravity waves [30], and
characteristics including superfluidity and vortex
formation in Bose-Einstein Condensates (BEC)
[31, 32, 33, 34, 35], to name a few. In dimension-
less form, the time-independent NLSE is given as

[
− 1

2

d2

dx2
+ V (x) + gIf(x)

]
f(x) = Ef(x) . (6)

Here, f(x), with x being spatial coordinates, rep-
resents a normalized single real-valued function
defined over the interval [a, b]. The term If(x)
represents the nonlinear interaction, g denotes the
strength of the nonlinearity, and V (x) is the exter-
nal potential. In this study, we consider If(x) =
|f(x)|2, quadratic potential V (x) = V0(x − x0)

2

centered around x0 = b−a
2 , and periodic bound-

ary conditions such that f(b) = f(a) and V (b) =
V (a). Small instances of the Eq. (6) can be solved
numerically on classical computers by employing
imaginary-time evolution [36, 33, 37], spectral,
variational or other methods [26]. However, when
addressing large instances of nonlinear problems,
the limitations associated with memory capacity
and computational time inherent in classical com-
putation become increasingly apparent.

Following standard numerical approaches, we
discretize the interval [a, b] into N equidistant
points xk = a + δk, where δ = (b − a)/N is
the spacing between two adjacent grid points, and
k ∈ {0, 1, 2, . . . , N − 1}. The normalization con-
dition on the function f(x) takes the form 1 =

δ
∑N−1

k=0 |f(xk)|2 =
∑N−1

k=0 |ψk|2, where we have

defined ψk =
√
δf(xk). We encode the N = 2n

amplitudes ψk, which may also incorporate the
initial conditions of the problem, into the basis
states |binary(k)⟩ of the n-qubit quantum regis-
ter such that the quantum state takes the form
|Ψ⟩ =

∑
k ψk|binary(k)⟩. By applying the finite-

difference method, the expectation value of the
total energy [from Eq. (6)] of the system is given
as the sum of potential, interaction, and kinetic
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Figure 4: Hadamard test measurement error against system size (left panel) and number of layers in
hardware-efficient ansatz (right panel). Parameters are taken as g = 1,V0 = 2000. Each circuit is
executed 100 times such that R = 100, and one hundred different sets of variational parameters have
been considered.

energies, ⟨⟨E⟩⟩ = ⟨⟨EP ⟩⟩+ ⟨⟨EI⟩⟩+ ⟨⟨EK⟩⟩, where

⟨⟨EP ⟩⟩ =
N−1∑
k=0

|ψk|2Vk , ⟨⟨EI⟩⟩ =
N−1∑
k=0

g

δ
|ψk|4 ,

⟨⟨EK⟩⟩ = − 1

2δ2

N−1∑
k=0

(
ψ∗
kψk+1 − 2ψ∗

kψk + ψ∗
kψk−1

)
,

(7)

for the discretized problem and ⟨⟨· · ·⟩⟩ represent the expectation value [38]. We consider the total energy
as the cost function C =

∑
j Cj =

∑
j⟨⟨Ej⟩⟩ for the variational algorithm such that the minimum value

of the cost function represents the ground state solution. Figure 3 depicts the quantum circuits to
evaluate the kinetic, potential and interaction energies. See arXiv:2403.16426 for more details while the
the dataset can be found at DOI 10.25592/uhhfdm.16129.

6.1 Hadamard test measurement error:

Quantum circuits in CQFD often require the measurement of the ancilla qubit alone to extract the value
of the cost function through the Hadamard test. The Hadamard test involves measuring the control
ancilla qubit in the Pauli-Z basis M times, which enables an estimation of the cost function. However,
this approach may result in a larger variance compared to direct measurement methods of the n-qubit
quantum register [39]. This variance stems from the Hadamard test outcomes being either +1 or −1,
contrasting with direct measurements that yield probability densities across 2n distinct basis states
for more precise cost function estimations. Here, we briefly compare the Hadamard test with direct
measurement methods, deferring a detailed analysis to future research.

In order to analyse the error, we consider a fixed Ansatz and random values of variational parameters.
For each execution of the quantum circuits, we define the difference of values measured using Hadamard
test (EHadamard

i ) and direct measurement (EDirect
i ) method

∆Ei = EHadamard
i − EDirect

i , (8)

which allow us to define the average error ⟨ϵ⟩r,θ,d[⟨ϵ⟩r,θ] and σr,θ,d =
√∑

[⟨ϵ⟩r,θ,d −∆Ei]/α [σr,θ =√∑
[⟨ϵ⟩r,θ −∆Ei]/α] is the standard deviation, where α is the total number of points, r is the number

of realization of same quantum circuit, d is the number of layers, and θ represent one random set of
variational parameters. Mean value of error and standard deviation highlight an average behaviour of
Hadamard test measurement error.

First, we consider varying number of layers from one to ten in hardware-efficient ansatz, g = 1, and
increase the system size. The left panel of Fig. 4 depicts the mean and standard deviation of error in
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kinetic, potential, interaction and total energy values. It can be observed that as we increase the system
size, spread in total, potential, and interaction energy increase, while there is no clear behaviour of
kinetic energy. Second, we fix the system size N = 26 number of grid points, and increase the number of
layers in the ansatz. The right panel of Fig. 4 highlights that there is no clear trend in kinetic, potential,
interaction and total energy of the system. This suggests that circuit depth doesn’t have significant
influence on the Hadamard test measurement error.

6.2 Benchmarking Simulations in Ideal Settings:

We numerically solve NLSE in various parameter regimes characterized by the strength of the nonlinear-
ity. We consider two-local hardware efficient ansatz structure shown in Fig. 3(a). The ansatz structures
are constructed for the superconducting devices where only nearest-neighbouring qubits have direct

(d)

(b)

(c)

(a)

layer

l-1

F ’ F ’

(f)(e) n = 2
n = 3
n = 4

n = 2
n = 3
n = 4

Figure 5: Quantum ansatz (a) and results of noiseless simu-
lations: (b-d) cost function values and (e-f) infidelity between
the trial and ground state probabilities. Panel (a) shows the
real-amplitude ansatz for the case of n = 4, where Ry(λi) is
a parameterized single-qubit rotation gate. Energy difference
∆E = ⟨⟨E⟩⟩var − ⟨⟨E⟩⟩GS vs iterations of classical optimizer
has been shown for (b) weak nonlinearity g = 10, (c) interme-
diate value of nonlinearity g = 500, and (d) strong nonlinearity

strength g = 5000. Infidelity F ′ =
∑2n−1

k=0

[
|ψGS,k|2 − |ψvar,k|2

]
is shown in panel (e) and (f) for g = 500 and g = 5000, respec-
tively. Here, blue, purple, and cyan color indicates the qubit
numbers n = 2 (n′ = 7), n = 3 (n′ = 10), and n = 4 (n′ = 13)
for l = 2, l = 4, and l = 7 layers, respectively. Moreover, cir-
cular and triangular markers indicate 0.1 million and 2 million
shots per circuit, respectively, for the cost function evaluation.

interaction. Due to the absence of any
two-qubit gate between distant qubits,
these ansatz results in shallower quan-
tum circuits. We employed IBM’s
QISKIT toolbox to simulate the sys-
tem on a classical computer. We choose
0.1m shots for each quantum circuit and
COBYLA optimizer with fixed number
of iterations.

We solve the ground state of the
NLSE in week, intermediate and strong
regime of nonlinearity for system sizes
n = 2, 3, 4 and results are presented
in Fig. 5(b-f). Difference between
variational and exact ground state en-
ergy in Fig. 5(b-d) approaches zero
in each case, indicating convergence to
ground state energy. Below, we focus
only on a fixed number of layers to il-
lustrate the performance of the varia-
tional algorithm. First, considering a
relatively weak nonlinearity strength of
g = 10, the circular markers in Fig.
5(b) demonstrate the convergence to-
ward the minimum energy, with the en-
ergy difference between the variational
energy and the ground state energy
approaching zero. Second, for inter-
mediate (g = 500) and strong (g =
5000) nonlinearity strengths, the circu-
lar markers in Fig. 5(c) and 5(d) depict
the convergence to the minimum en-
ergy. The infidelity between the ground
and trial state probabilities F ′ =∑2n−1

k=0

[
|ψGS,k|2 − |ψvar,k|2

]
, indicated

by circular markers in Figs. 5(e) and
5(f) for intermediate and strong nonlin-
earity strengths, respectively, highlights
fidelity exceeding 98% upon conver-
gence. This fidelity may substantially
improve by initiating the variational al-
gorithm with an educated guess that
possesses a considerable overlap with
the ground state. These results high-
light that the real-amplitude ansatz ef-
ficiently approximates the ground state
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(d)

(b)

(c)

(a)

(e)

F ’

Noiseless
Noisy
Exact

F ’’

Figure 6: Results for noisy simulations: (a) cost function convergence, (b) infidelity of trial state proba-
bilities, and (c-e) effects of hardware noise on cost function components. Circular (triangular) markers
in panel (a) shows the energy ⟨⟨E⟩⟩var vs iterations of classical optimizer for g = 5000, n = 2 (n′ = 7)
and l = 2 of real amplitude ansatz in the absence (presence) of quantum noise. Panel (b) (and the inset

therein) shows the infidelity F ′ =
∑2n−1

k=0

[
|ψGS,k|2 − |ψNoisy

var,k |2
]
(F ′′ =

∑2n−1
k=0

[
|ψNoiseless

var,k |2 − |ψNoisy
var,k |2

]
).

Panel (c, d, e) shows the quantities ⟨⟨EK⟩⟩δ2, ⟨⟨EP ⟩⟩/N , and ⟨⟨EI⟩⟩δ/g, which are measured from the
ancilla qubit. Here, δ = 1/2n and N is the norm of the potential function.

of the NLSE across different regimes
characterized by varying strengths of
nonlinearity, thereby demonstrating its
expressivity for solving the NLSE with high fidelity. A detailed discussion can be found in arXiv:
2403.16426.

6.3 Simulations Incorporating Superconducting Quantum Hardware Noise

The hardware noise features a mean thermal relaxation time (T1) of 100µs and a mean dephasing
time (T2) of 85µs, with standard deviations of 30µs and 50µs, respectively. It exhibits mean error
rates of 2.625 × 10−4 for single-qubit gates and 9.616 × 10−3 for two-qubit gates. Moreover, the mean
probability P01 (P10) of measuring state |0⟩ (|1⟩) when the qubit is prepared in state |1⟩ (|0⟩) is 2.06×10−2

(1.98× 10−2). Here, we assume trivial qubit reset noise, ensuring that each qubit is perfectly initialized
in the |0⟩ state at the onset of each computation.

Considering n = 2 (n’ = 7) qubit system with strong nonlinearity g = 5000, triangular (circular)
markers in Fig. 6(a) depict the energy expectation in the presence (absence) of quantum noise. It is
important to note that only the energy cost function values obtained in the noisy settings are utilized
in the classical optimization to update the variational parameters. Fig. 6(a) highlights that although
the energy expectation values from the noisy simulations have smaller magnitudes, they exhibit similar
behaviour to those obtained in the noiseless settings. Furthermore, Fig. 6(b) illustrates that the final
trial state probabilities in the noisy settings closely matches the ground state, indicating that the noisy
simulation converges to the set of variational parameters that approximate the ground state of the
problem.

Given the preparation of high-fidelity trial state on the primary quantum register, it is pertinent to
consider that quantum noise might influence other distinct processes, such as encoding of the potential
function, replication of the variational state, and computation of the energy cost function. To analyze
the effect of quantum noise, we examine each component individually, noting the difference in outcomes
in the presence and absence of quantum noise. First, we assess the kinetic energy component ⟨⟨EK⟩⟩/δ2,
where the corresponding quantum circuit comprises 16 (42) CNOT (single-qubit) quantum gates. As
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depicted in Fig. 6(c), a minor deviation of approximately 0.05 is observed in kinetic energy values. With
the trial state already prepared to high fidelity, the observed discrepancy in kinetic energy values could
be attributed to the impact of quantum gate noise during the computation process. Second, we analyze
the potential and interaction energy components, ⟨⟨EP ⟩⟩/N and ⟨⟨EI⟩⟩δ/g, using the corresponding
quantum circuits, which incorporate 62 (170) and 133 (273) CNOT (single-qubit) gates, respectively.
Notable differences, approximately 0.85 to 0.35 and 0.5 to 0.15 at the initial and final stages of classical
optimization, are observed in Figs. 6(d) and 6(e), reflecting the impact of quantum noise. These
disparities in potential and interaction energies likely arise from quantum noise affecting the process of
encoding the potential function and replicating the trial states on distinct quantum registers, as well as
from the bit-wise multiplication across these registers.

Our investigation reveals that deeper quantum circuits with a substantial number of imperfect CNOT
and single-qubit gates result in significant deviation and variance in the cost function values, emphasizing
the necessity for advanced noise mitigation and/or error correction strategies to improve the quantum
computational accuracy and reliability of the variational algorithm.

7 Heat Equation

The Heat or diffusion equation determine the time evolution of a spatial distribution of the temperature
field u(x⃗, t) of a conductive region given an initial temperature distribution u(x⃗, 0) = u0. The data set
for gate-based simulation of this equation can be found at the data set at DOI 10.25592/uhhfdm.16108

In one-dimension, the Heat equation reads

∂u(x, t)

∂t
− κ

∂2u(x, t)

∂x2
= 0, u(x, 0) = u0, 0 ≤ x ≤ L, (9)

where κ is the thermal diffusivity. As we previously mentioned, we want to write the PDE using second-
order finite difference so that we have to discretize the time and the position. Thus in the position xi at
time tj , the Heat equation reads

u(xi, tj + dt)− u(xi, tj)

dt
= κ

[
u(xi + dx, tj)− 2u(xi, tj) + u(xi − dx, tj)

(dx)2

]
. (10)

Solving for u(xi, tj + dt), we obtain

u(xi, tj+1) = u(xi, tj) +

[
κdt

(dx)2

][
u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

(dx)2

]
, (11)

we have defined xi±1 = xi ± dx that corresponds to the backward/forward difference, similar for the
time. The next step is to express Eq. (11) in terms of gates to be implemented on a quantum processor.
We should note that the size of spatial discretization of the velocity field corresponds to the size of the
multi-qubit i.e, Nmax = 2n, where n is the number of two-level system to be used. From Ref [23] we
encode the velocity field u(x, t) using the variational circuit depicted in Fig. 2

u(x, tj) = u0jÛ(θ⃗j)|0̄⟩ (12)

where u0j is a scaling factor because the wave function is normalized, |0̄⟩ is a multi-qubit state prepare
in their ground state, and U(θj) is the unitary representing the circuit encoding the field. The selection

of Û(θ⃗j) has a deep impact in the convergence of the PDF. The rule of thumb for choosing an adequate
anzat is combining shallow circuits that are less prone to be affected by the noise, while be expressive
enough to encode all the velocity field but with an optimal number of variational parameters for avoiding
Barren plateaus [40]. At this stage, we use the hardware efficient ansatz provided by qiskit based on
nearest neighbor CNOT gates and controlled-rotations CRY [11], here we choose rotation over the y-axis
because we demand real amplitudes for encoding the field u(x, t). We solve iteratively this differential
equation by implementing each part of the differential equation on a quantum circuit denoted by Ô,
we should note that depending on the PDF the circuit representation of the operator may change. The
cost function minimizes the distance between the state after applying Ô at tj with the candidate of the
solution at tj+1, explicitly

C(u0j+1, θ⃗j) = ||u(x, tj+1)− (1 + dt)Ôu(x, tj)||, ∀j ∈ (0, Nt) (13)
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for every time step until Nt. Inspired by the procedure developed in Ref. [23] we write explicitly the cost
function in terms of expectation values as follows

C(u0j+1, θ⃗j) = ||u0j+1||+ ||u0j || − 2u0j+1u
0
j (E1 + E2), (14a)

E1 =

[
1− 2κ

dt

(dx)2

]
⟨0̄|Û†(θ⃗j)Û(θ⃗j+1)|0̄⟩, (14b)

E2 = κ
dt

(dx)2

[
⟨0̄|Û†(θ⃗j)ÂÛ(θ⃗j+1)|0̄⟩+ ⟨0̄|Û†(θ⃗j)Â

†Û(θ⃗j+1)|0̄⟩
]
. (14c)

Here, Â represents the shifter unitary that shifts the amplitudes of statevector in a periodic way. There-
fore, it is straightforward to solve differential equations with periodic boundary conditions by incorpo-
rating this shifter unitary into cost function terms. However, for considering problems with Dirichlet
boundary conditions, we need to counteract the terms in cost function from periodic shifter. In addition,
for Neumann boundary conditions, we need ghost point technique to incorporate information out of
boundary into the finite difference method. A way to implement these techniques into the variational
quantum algorithm by [24] is proposed by [41] and has been implemented for solved problems in this
report, with additional gate-level data sets being available at DOI 10.25592/uhhfdm.14123.

In order to reduce the number of resources used we reduced the number of multi-controlled gates by
employing a mathematical trick: any gate whose action on the |0⟩⊗n state maps it into itself does not
need to be controlled by the measured qubit. Indeed, if we define the gate U where U |0⟩⊗n = |0⟩⊗n,
then the action of it’s controlled version UC is the same as the action of the non-controlled version:

UC(|0⟩+ |1⟩)|0⟩⊗n = |0⟩|0⟩⊗n + |1⟩U |0⟩⊗n = |0⟩U |0⟩⊗n + |1⟩U |0⟩⊗n = (|0⟩+ |1⟩)U |0⟩⊗n (15)

This defines a wide class of gates, including Toffoli gates and multi controlled Not gates which are
a crucial part of the algorithm, thus reducing the number of controlls massively in view with a future
experimental demonstration.

7.1 Benchmarking Simulations in Ideal Settings

In this section we run the algorithm in ideal settings. To quantify how good our solutions are, we compute
the mean squared error between the classical solution and the obtained with the variational algorithm
at time tj

MSEj =
1

N

N∑
i

[uC(xi, tj)− uQ(xi, tj)]
2 (16)

where uC(xi, tj) and u
Q(xi, tj) are the classical and quantum solutions, respectively.

For the Heat equation with periodic boundary conditions, we chose the initial condition to be u(x, 0) =
sin(πx). The equation is solved starting from time t = 0 to t = 10 for n = 3, 4, 5 qubits. The results for
this problem are mentioned in Table 3. A visualization of a result from four qubits ansatz is shown in
Figure 7.

N Qubits dt Timesteps N Parameters Ansatz 2q gates MSE
3 0.1 100 9 13 1.2e-4
4 0.1 100 16 25 2.2e-4
5 0.01 1000 30 50 23.2e-4
5 0.01 1000 45 77 25.9e-4
5 0.01 1000 55 95 23.2e-4

Table 3: MSE obtained for different number of qubits, after an evolution from T = 0 to T = 10

We also solved the heat equation with homogeneous Dirichlet boundary conditions, u(0, t) = 0 and
u(1, t) = 0. The initial condition for this problem is u(x, 0) = 1. We implemented the ghost point method
for treating boundary conditions in variational quantum simulations proposed by [41]. We simulated this
problem for n = 3, 4 qubits. The results for this problem are mentioned in Table 4. A visualization of a
sample result from three qubits ansatz is shown in Figure 8.

For the next problem, we considered inhomogeneous Dirichlet boundary conditions u(0, t) = 1 and
u(1, t) = 0. The initial condition for this problem is u(x, 0) = 0. We simulated this problem for n = 3
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(a) Classical result (b) Quantum result

Figure 7: Solution of heat equation with periodic boundary conditions using four qubits ansatz. The
solution starts at u(x, 0) = sin(πx) and ends at u(x, 10) ≈ 0. Additionally, the projection of solution
u(x, t) onto planes are represented using lines.

N Qubits dt Timesteps End time N Parameters Ansatz 2q gates MSE
3 1 100 100 12 18 5.9e-7
4 0.1 100 10 20 32 7.8e-7
4 0.1 100 10 24 39 12.2e-7

Table 4: MSE obtained for different number of qubits and timesteps evolution.

qubits. The timestep for this problem is chosen to be 0.1. The problem is solved from t = 0 to t = 10.
The number of parameters for the ansatz is 12. The MSE value of the end timestep is 8.1 × 10−4. A
visualization of a sample result from three qubits ansatz is shown in Figure 9.

These results show excellent agreement between the classical and quantum solutions.

7.2 Benchmarking Simulations with limited statistics

We now perform simulations taking into consideration the probabilistic nature of quantum computers,
that is with limited statistics (shot noise). This will be dependent on the number of shots that each
architecture allows.

These simulations were performed using qiskit−Aer simulator. We present the results for 3 different
shot numbers considered- 1024 shots, 10 000 shots and 100 000 shots. 10 000 shots and 100 000 shots
are the maximum possible shot number for Quantinuum’s H series and IBM’s Sherbrooke, respectively.

Additionally, given that here we are dealing with limited statistics, we present the average MSE score
for 10 simulations as well as the standard deviation σ calculated as:

σ =

√∑N=10
i (MSEi −MSE)2

N
(17)

For this section we considered the heat equation with periodic boundary conditions and initial con-
ditions: κ = 0.2 and u(0, x) = sinπ x

2N
2. We considered the 3 qubit Hardware Efficient Ansatz with 9

parameters used in the previous section. The results obtained were:
From these results we can clearly see that the number of shots availble will influence the quality of

our solution. Indeed, the higher the number of shots, the lower the average mean squared error, MSE
and the lower the variance, σ. This will motivate to look preferably to platforms that allow a greater
number of shots.
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(a) Classical result (b) Quantum result

Figure 8: Results for heat equation with homogeneous Dirichlet boundary conditions solved using 3
qubits. The solution u(x, t) with homogeneous Dirichlet boundary conditions u(0, t) = u(1, t) = 0,
initially starts at u(x, 0) = 1 and ends at u(x, 100) ≈ 0.

(a) Classical result (b) Quantum result

Figure 9: Results for heat equation with inhomogeneous Dirichlet boundary conditions solved using 3
qubits. The solution u(x, t) with inhomogeneous Dirichlet boundary conditions u(0, t) = 1 and u(1, t) =
0, initially starts at u(x, 0) = 0 and evolved untill t = 10.

7.3 Benchmarking Simulations with Noise Models

In this section we performed simulations using noise models based on Hardware. Two models were used,
one based on Quantinuum H1 system and one based on IBM Sherbrooke. Whilst the noise model based
on IBM Sherbrooke is readily available as part of qiskit fake backends, the noise model for Quantinuum
H1 was generated using the data available in 1 and qiskit general noise model functions. For both cases,
qiskit transpiler was used to convert the circuits into native gates in accordance with the topology of
each machine, i.e all to all for quantinuum vs grid based topology for IBM.

Additionally, an error mitigation method, Zero Noise Extrapolation [25], was applied as an error
mitigation technique to the IBM simulations. This method improved results substantially. However
it cannot be applied to Quantinuum’s systems due to the increased cost in computing time and slow
measurement characteristic of ion trap computers.

In our case, Zero Noise extrapolation was applied by repeating 2 qubit gates, the biggest source of
noise in the current state of the art machines, an odd number of times. The repetition allows us to
increase the level of noise present by increasing the number of gates without affecting the ideal evolution
of the circuit. Afterwards, by fitting a polynomial, we can estimate the ideal result in the absence of
noise. In our case study we performed a quadratic fit by executing every 2 qubit gate 1, 3 and 5 times.

Running the circuits that allow to solve the Heat equation with the same boundary and initial
conditions as in the previous section under these noise models we obtain the following results:

From these results we can see the tremendous improvement that Zero Noise Extrapolation has on
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Shots dt N Timesteps MSE σ
- 0.01 30 0 -

1024 0.01 30 0.055 0.022
10000 0.01 30 0.012 0.004
100000 0.01 30 0.005 0.003

Table 5: Average MSE obtained for different number of shots, evolving from T=0.0 to T=0.3. The first
line corresponds to the ideal result

System dt Max 2q gate count ZNE MSE σ
IBM FakeSherbrooke 0.1 90 No 0.602 0.090
IBM FakeSherbrooke 0.1 90 Yes 0.033 0.011
Sim Quantinuum H1 0.1 36 No 0.777 0.391

Table 6: Average MSE obtained under different noise models, evolving from T=0.0 to T=0.3

the IBM simulator. For Quantinuum’s systems, we can extract the expected credit cost by using their
formula [42]:

HQC = 5
N1q +N2q +Nm

5000
× S (18)

where N1q is the number of single qubit gates, N2q is the number of double qubit gates, Nm is the number
of measurements and S is the number of shots.This translates into a cost of 2333 credits for a single
call of the loss function for the Hardware Efficient Ansatz and credits for the Symmetry Based Ansatz.
Given that COBY LA requires around ≈ 50 calls to converge and the H-series has a computation power
of around 1000 credits per hour, this would give a time of 116.65 hours to execute a single time step for
the Hardware Efficient Ansatz.

Given these results, an experiment using IBM’s hardware appears to be the better solution for a
first implementatiomn and will be executed in the following months. Boundary conditions other than
periodic conditions result in circuits that are too deep to be run with current processors.

8 Burgers Equation

Moving forwards, we now consider the Burger’s equation [43] which is a non-linear PDE that describes
the dynamics of a field in presence of diffusion and convection. It is an object of great interest because it is
the simplest model where we can observe non-linear effects in fluids such as shockwaves, turbulences and
traffic flow due to the competition between diffusion and the non-linear convection. Its one dimensional
form reads

∂f(x, t)

∂t
= f(x, t)

∂f(x, t)

∂x
+ ν

∂2f(x, t)

∂x2
, (19)

where f(x, t) is the spatiotemporal distribution of the velocity field of the fluid. ν represents the viscosity
of the fluid. We solve this equation by again discretizing both position and time. The decomposition of
the Laplacian operator is the same as in the Heat equation. Using the finite central difference, we write
the convection term as:

f(x, t)
∂f(x, t)

∂x
= f(xi, tj)

f(xi+1, tj)− f(xi−1, tj)

2dx
, (20)

Here, we propose the same ansatz scheme as in Heat equation

f(x, tj) = λ0jU(θ⃗j)|0̄⟩, (21)

where again λ0j is a scaling factor due the normalization of the wave function. We use the same cost

function as the Heat equation, but the operator Ô is modified because of the non-linear term. In this
case, we can write explicitly the cost function in terms of

C(λ0j+1, θ⃗j) = |λ0j |2 + |λ0j+1|2 − 2λ0j+1λ
0
j (E1 + E2 + E3), (22)
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The second term is the same as in Eq. (14b) and Eq. (14c), and E3 corresponds to the circuit encoding
of the convection part of the Burger’s equation:

E3 = λ0j+1

dt

2dx

[
⟨0̄|Û†(θ⃗j)D̃

†AÛ(θ⃗j+1)|0̄⟩ − ⟨0̄|Û†(θ⃗j)D̃
†Â†Û(θ⃗j+1)|0̄⟩

]
. (23)

where the operator D̃ returns the diagonal field values f(xi, tj).

8.1 Benchmarking Simulations in Ideal Settingss

In the master thesis, ”Variational quantum algorithms for the 1D Burgers’ equation” Greta Reese per-
formed multiple noiseless simulations of the 1D Burgers’ equation for different initial conditions and
different Ansatze, finding a good agreement between the ideal quantum result and classical simulations
[44]. Starting conditions such as delta distributions and triangular distributions were studied and the
shuffle anstaz and compact ansatz were used for the execution of the algorithm. Examples of the simu-
lations performed can be seen in figures 10 and 11.

(a) t = 0s (b) t = 2s (c) t = 4s

Figure 10: Classical numerical time evolution of the Burgers’ equation for 26 = 64 gridpoints and viscosity

ν = 0.001m2

s . From the delta velocity distribution at time t = 0s, the triangular velocity distribution is
formed, which is the theoretical solution for small viscosities ν → 0. The velocity distribution is moved
to the right by the determining advection term.

(a) t = 0s (b) t = 2s (c) t = 4s

Figure 11: Classical numerical time evolution of the Burgers’ equation for 26 = 64 gridpoints and viscosity

ν = 10.0m2

s . From the delta velocity distribution at time t = 0s, the Gaussian velocity distribution
centred on the point of the initial delta distribution is formed, which is the theoretical solution for large
viscosities ν.

For more information about these simulations, please refer to Greta Reese’s thesis [44], while the data
set is available here: DOI https://doi.org/10.25592/uhhfdm.14213.

With the eventual goal of an experimental implementation in the near future that captures non trivial
feautures inherent of fluid dynamics, such as a shock-wave we performed further simulations with ansatze
more suitable for hardware. We chose as initial condition a sine wave, discretized in 2n, where n is the
number of qubits, along a single dimension. Additionally, we considered periodic boundary conditions,
where f(0) = f(2n) and a viscosity of ν = 0.01.

We also propose a second Ansatz which possesses some additional symmetry information about the
solution already defined into its structure - we consider a rotational symmetry around the center point
of the field, imposing that the second half of the velocity field has to be the negative of the first. We
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achieve this by using a Hadamard gate and a Z gate at the last qubit of our ansatz, ensuring that we
have a solution of the form |0⟩|ψ⟩⊗n−1 − |1⟩|ψ⟩⊗n−1 To ensure the correct ordering of the basis state at
the second half of the field, we need an additional Toffoli gate to flip the second qubit, a CNOT and
3-controlled-qubit-NOT gate per extra qubit beyond the 3 qubit case. These can be decomposed into
Toffolis with the help of additional ancillary qubits. The expected advantage of this Ansatz is that it will
converge better to a solution at the expense of being less general. A comparison between the Hardware
Efficient Ansatz and the Symmetry Based Ansatz for 3 qubits can be found in figure 12.

Figure 12: Hardware Efficient Ansatz (a) versus Symmetry Based Ansatz (b), for 3 qubits.

We compare the quantum solution to the classical solution via the MSE just as in the heat equation.
To get the classical solution we used the central finite differences for the second derivatives, just as in
the quantum method. For the first derivative, the forward difference was used at point 0, the backward
difference at point N and the central differences for the inner points. This method showed stability and
convergence although more complex methods, such as Runge-Kutta 5 [45] could have been used. We
chose the simpler approach for its similarity to the quantum algorithm employed. The quantum solutions
were obtained using the BFGS optimizer, directly from the SciPy library [46].

Running these Ansatz without noise we obtain the following results:

Ansazt N Qubits dt N 2q gates N Parameters MSE
Symmetry Based 3 0.01 11 3 0.001
Hardware Efficient 3 0.01 6 4 0.049
Symmetry Based 4+1 0.01 38 8 0.095
Hardware Efficient 4 0.01 18 12 0.136
Symmetry Based 5+2 0.005 48 106 0.044
Hardware Efficient 5 0.005 60 80 0.000

Table 7: MSE obtained for different Ansatze, after an evolution from T = 0 to T = 0.3

We present the evolution for the 5 qubit case in figure 13.
For ansatze with more than 4 qubits, a smaller time step of dt = 0.005 was necessary for the solution

to converge.
From these results we can see that the symmetry ansatz generally takes less parameters and produces

lower MSE at the expense of a higher number of 2 qubit gates and required physical qubits for a low
amount of qubits (< 5), but this situation reverses for a large amount of qubits. At the same time, for
a qubit number ≥ 5, the Hardware Efficient Ansatz produces solutions as good as the results obtained
classically. Therefore the Symmetry Based Ansatz will have only a limited utility - it is best suitable for
systems that can only handle limited depths, which the current NISQ regime falls into. This motivates
the need for simulations with noise to shed a light on how the MSE score is affected by noisy intermediate
scale computers.

8.2 Benchmarking Simulations with limited statistics

In this section, we rerun the simulations with limited statistics, and using the same method as in section
7.2 for the cases with 3 and 4 qubits. The results obtained can be found in table 8 and the data set at
DOI 10.25592/uhhfdm.16108.

These results were obtained using the COBY LA optimizer from the SciPy [46] library. This optimizer
is more suitable for noisy data, as it is a global optimizer, but it is generally slower than BFGS.
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Figure 13: Ideal evolution of the Hardware Ansatz for 5 qubits. A triangular solution is formed, just as
expected

Ansazt N Qubits dt MSE 1024 σ1024 MSE 10k σ10k MSE 100k σ100k
Symmetry Based 3 0.01 0.389 0.283 0.116 0.031 0.074 0.023
Hardware Efficient 3 0.01 0.387 0.297 0.1656 0.032 0.106 0.017
Symmetry Based 4+1 0.01 0.765 0.270 0.178 0.035 0.170 0.077
Hardware Efficient 4 0.01 1.061 0.733 0.508 0.119 0.354 0.076

Table 8: MSE obtained for different Ansatze, after an evolution from T = 0 to T = 0.3 with limited
statistics

From these results we can already see that the number of shots used is crucial for an actual imple-
mentation. Indeed, the results with just 1024 shots produced a much higher MSE.

This motivates us to look preferably to solid state platforms, such as superconducting qubits, due to
their higher number of available shots and to investigate further into variance reduction methods, such
as the ones presented in [39, 47] which could be crucial for experimental implementations.

8.3 Benchmarking Simulations with Noise Model Statistics

Due to the depth and number of expectation values required to solve the Burgers equation, in this
section we only performed the simulations with 3 problem qubits given that circuits beyond these sizes
will mainly result in random noise. Additionally, we considered 2 different time steps, dt = 0.1 and
dt = 0.3. We increased the time step to reflect the limited computing time available on these machines.

Again, due to limited statistics and the stochastic nature of the noise studied, we present an average
MSE score over 5 different runs. For IBM’s noise model, we present the result with and without Zero
Noise Extrapolation.

The simulations using Quantinuum’s noise model were obtained assuming 10 thousands shots whilst
the ones performed with IBM’s noise assume 100 thousand shots. The obtained results are presented in
table 9 and the data set at DOI 10.25592/uhhfdm.16108.

From these results we can see that Quantinuum’s system, as expected due to their lower errors,
produces better results, although their variance is slightly higher given the lower shot count. At the
same time, we can also see that Zero Noise Extrapolation generally improved the simulated results, at
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Ansatz N Qubits dt System ZNE Max 2Q gates MSE σ
Symmetry Based 8 0.1 Sim Quantinuum H1 No 46 0.159 0.027
Symmetry Based 8 0.1 IBM FakeSherbrooke No 133 0.432 0.034
Symmetry Based 8 0.1 IBM FakeSherbrooke Yes 133 0.256 0.090
Hardware Efficient 8 0.1 Sim Quantinuum H1 No 31 0.175 0.041
Hardware Efficient 8 0.1 IBM FakeSherbrooke No 91 0.226 0.039
Hardware Efficient 8 0.1 IBM FakeSherbrooke Yes 91 0.117 0.013
Symmetry Based 8 0.3 Sim Quantinuum H1 No 46 0.097 0.047
Symmetry Based 8 0.3 IBM FakeSherbrooke No 133 0.478 0.032
Symmetry Based 8 0.3 IBM FakeSherbrooke Yes 133 0.186 0.065
Hardware Efficient 8 0.3 Sim Quantinuum H1 No 31 0.108 0.020
Hardware Efficient 8 0.3 IBM FakeSherbrooke No 91 0.136 0.016
Hardware Efficient 8 0.3 IBM FakeSherbrooke Yes 91 0.138 0.088

Table 9: MSE score for 3 qubits, under expected noisy conditions for IBM’s sherbrooke and Quantinuum’s
H1

the expense of a higher variance, just as expected.
Again, for Quantinuum’s systems, we can extract the expected credit cost by using their formula [42]:

HQC = 5
N1q +N2q +Nm

5000
× S (24)

where N1q is the number of single qubit gates, N2q is the number of double qubit gates, Nm is the
number of measurements and S is the number of shots. This translates into a cost of 2093 credits

Figure 14: Velocity field simulated with Fake Sher-
brooke for a single time step of 0.3. A shock wave is
clearly emerging in the quantum solution. This run
finished with an MSE of 0.122.

for a single call of the loss function for the Hard-
ware Efficient Ansatz and 4387 credits for the
Symmetry Based Ansatz. Given that COBY LA
requires around ≈ 50 calls to converge and the
H-series has a computation power of around 1000
credits per hour, this would give a time of 145.15
hours to execute a single time step for the Hard-
ware Efficient Ansatz and 219.35 for the Symme-
try Based Ansatz.

These time frames are completely infeasible.
Unfortunately there is no easy fix here. We could
potentially reduce the number of shots, which
could vastly reduce the number of credits consume
but as seen in section 7.2 this would lead to a large
increase in error. Additional optimization of the
circuits could reduce the number of single and dou-
ble qubit gates, but given the reduced size of the
Ansatze here considered, this is not obvious. An-
other avenue would be to take a different optimizer
that does not require as many calls to converge,
but so far no such optimizer was found. Therefore,
at the moment, it seems apparent the need to use superconducting qubits for experimental implemen-
tations of this algorithm, given their faster gate and measurement speed necessary for the cumbersome
optimization.

At the same time, we also see that the time discretization is not a dominant factor for the MSE
obtained, so an implementation with a single time step, instead of iteration seems reasonable for the
current NISQ era.

That said, the solutions obtained simulating IBM’s Fake Sherbrooke can be clearly improved. Possible
paths forward would be to implement better noise mitigation and use better quantum chips. Nonetheless
we can clearly see the emergence of non trivial features, such as a shock wave, on our simulated solutions,
as as shown in figure 14. This demonstrates that Quantum Computers are well positioned for the study
of features that are hard to classically simulate, such as shock waves and turbulence.
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