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1 Executive Summary

The Quantum Computational Fluid Dynamics (QCFD) project is dedicated to establishing an open-
access quantum software framework to address Computational Fluid Dynamics (CFD) challenges present
in today’s industry.

As a part of the Work Package 7 (WP7) ”Flagship hardware calculations”, Deliverable D7.1 provides
a core set of “small benchmark” examples of solutions computed with quantum circuit gate-level simu-
lations and first usage of quantum hardware. These problems are simplified to be able to run on current
and short term capabilities of quantum computers, and provide a basis for comparison with benchmark
CFD solutions from work packages 1, 4, and 6.

In accordance with the Data Management Plan (DMP), D7.1 follows the FAIR data principles – Find-
ability, Accessibility, Interoperability, and Reusability – where each dataset is provided with a detailed
metadata structure with unique identifiers and proper documentation, ensuring that the data is not only
easily accessible but also readily transferable and reusable. The access to the public is granted by a dedi-
cated research data repository (FDR) hosted at the university of Hamburg (UHH), https://www.fdr.uni-
hamburg.de/communities/qcfd/. To facilitate the users overview, all datasets belonging to the QCFD
project, namely those from this report (which include 10.25592/uhhfdm.16681, 10.25592/uhhfdm.16690,
10.25592/uhhfdm.16718, 10.25592/uhhfdm.16129, and 10.25592/uhhfdm.16108) are collected in a QCFD
community group on the mentioned data server.
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2 Introduction

Solving numerically differential equations is at the heart of science and engineering because many funda-
mental processes in nature are described by such equations. Examples include the convection-diffusion
process, wave dynamics, fluid dynamics to name a few [1]. The typical approach for solving these equa-
tions is to discretize the solution candidate in position and time and write the derivatives (variations)
using approximate methods such as finite difference and solve the differential equation iteratively [2].
The main problem with this approach relies on the increasing number of resources for simulating these
systems up to a bounded precision, requiring high-parallelization and high-performance computing.

Therefore new computational technologies are required. One possible approach relies on using quan-
tum computers, where it has been proposed that solving algorithms on them may lead to better asymp-
totic scaling, when compared with its classical counterpart [3, 4]. In this framework, we can exploit the
elements from gate-based quantum computation for encoding the required operations (time and spatial
derivative) and variational quantum circuits [5] for engineering adequate candidates (anzätzes) of the
solution. Both problems (operation and anzatz) are mapped to quantum circuits that can be run on
an operative quantum computer. Nowadays, there are a wide range of potential quantum computers
running with a modest number of qubits in the so-called Noise Intermediate-Scale Quantum Computers
(NISQ) [6] from different platform such as photons [7], neutral atoms [8], trapped-ions [9] and supercon-
ducting circuits [10, 11]. Each of them has its own strengths and disadvantages that can exploited to
solve differential equations. For this deliverable, provide an early exploration of the necessary elements
in order to successfully solve these equations on a superconducting quantum computer.

Figure 1: Representation of a Trapped Ion Computer (a) from [12] and an IBM 127 superconducting
qubits quantum Computers(b) from [11]. Whilst the Ion trap allows for all-to-all connectivity, the
superconducting computer possesses a limited topology, where only certain connections between qubits
are allowed.

3 Platforms

Following the conclusions of workpackage report 6.1, we focus on superconducting qubits due to
their high rate of measurement and circuit speed, a necessary condition to achieve the desired precision
for this algorithm. We analysed the simulated performances of the IBM superconducting quantum
processors Sherbrooke. The processor consist of 127 Transmon qubits [13] capacitively connected to
auxiliary resonators on a grid configuration [dark blue lines on Fig. 1(b)]. The IBM architecture does
not support all-to-all connectivity. To perform operations between distant qubits swap operations are
needed, increasing the overhead of the circuit. In this architecture, both single- and two-qubit operations
are implemented by voltage-controlled microwave drives addressing one [14] or both qubits at the same
time [15, 16]. Finally, the readout of the qubit is performed using an auxiliary resonator so that the
measured voltage is proportional to the state of the qubit [17, 18]. For these architectures, the native
set of gates are the following

• Single-qubit gates

√
X =

1

2

(
1 + i 1− i
1− i 1 + i

)
, X =

(
0 1
1 0

)
, RZ(λ) =

(
e−iλ

2 0

0 ei
λ
2

)
. (1)
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• Two-qubit gates

ECR =
1√
2


0 0 1 i
0 0 i 1
1 −i 0 0
−i 1 0 0

 (2)

Qubit Readout ID
√
X Pauli-X ECR

0 4.80 2.008 2.008 2.008 1 0:0.0134
1 2.13 3.565 3.565 3.565 1 2:0.0095
2 5.40 2.633 2.633 2.633 1 0:0.0134
3 1.30 2.214 2.214 2.214 3 2:0.0089
4 1.72 1.618 1.618 1.618 4 3:0.0046
5 4.61 2.933 2.933 2.933 5 4:0.0072

Table 1: Error sources (in %) of the Sherbrooke IBM quantum processor.

All these operations are affected by the action of the electronic environment that introduces relaxation,
decoherence and crosstalk [19]. The typical errors affecting the architecture are summarized in Table 1.

4 Data Organization

Following the model of previous reports, we maintain the same guidelines for data accuracy and trans-
parency. Therefore, for each equation analysed we provide the parameters and field obtained at each time
step in easily readable files either in .txt format or .npy format. All data is clearly labeled and indicated
in the appropriate file. All numbers are used with double-precision floating-point number format. Data
obtained from experiments on IBM machines is provided in .csv format.

To access the data obtained throughout this report we mainly used two criteria: Fidelity - the
similarity measure and formed by the scalar product of two normalized vectors - and the Mean Squared
Error - an average measure of the squared difference between two data sets.

5 Nonlinear Schrodinger Equation

The nonlinear Schrödinger equation (NLSE) and its variants model various phenomena [20, 21, 22, 23,
24, 25, 26, 27, 28, 29], such as dynamics of light in nonlinear optics [22, 23], envelope solitons and
modulation instabilities in plasma physics and surface gravity waves [24], and characteristics including
superfluidity and vortex formation in Bose-Einstein Condensates (BEC) [25, 26, 27, 28, 29], to name a
few. In dimensionless form, the time-independent NLSE is given as[

− 1

2

d2

dx2
+ V (x) + gIf(x)

]
f(x) = Ef(x) . (3)

Here, f(x), with x being spatial coordinates, represents a normalized single real-valued function defined
over the interval [a, b]. The term If(x) represents the nonlinear interaction, g denotes the strength of the
nonlinearity, and V (x) is the external potential. In this study, we consider If(x) = |f(x)|2, quadratic
potential V (x) = V0(x − x0)

2 centered around x0 = b−a
2 , and periodic boundary conditions such that

f(b) = f(a) and V (b) = V (a). Small instances of the Eq. (3) can be solved numerically on classical
computers by employing imaginary-time evolution [30, 27], spectral, variational or other methods [20].
However, when addressing large instances of nonlinear problems, the limitations associated with memory
capacity and computational time inherent in classical computation become increasingly apparent.

By applying the finite-difference method, the expectation value of the total energy [from Eq. (3)] of the
system is given as the sum of potential, interaction, and kinetic energies, ⟨⟨E⟩⟩ = ⟨⟨EP ⟩⟩+⟨⟨EI⟩⟩+⟨⟨EK⟩⟩,
where

⟨⟨EP ⟩⟩ =
N−1∑
k=0

|ψk|2Vk , ⟨⟨EI⟩⟩ =
N−1∑
k=0

g

δ
|ψk|4,

⟨⟨EK⟩⟩ = − 1

2δ2

N−1∑
k=0

(
ψ∗
kψk+1 − 2ψ∗

kψk + ψ∗
kψk−1

)
,
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Figure 2: Design of the quantum circuits used to measure the (a) potential, (b) interaction, and (c)
kinetic energies. Here, H is the Hadamard gate, U(λ) is the quantum ansatz that represents the trial
state, and V̂ is the potential unitary which encodes the potential function values to the basis states.
Here, we have shown an example of n = 4 (n′ = 13), which can be generalized to an arbitrary number of
qubits. Panel (d) shows the decomposition of the Toffoli gate into a sequence of single-qubit gates and
controlled-NOT gates, where T = Rz(π/4) and T

† = Rz(−π/4)

for the discretized problem and ⟨⟨· · ·⟩⟩ represent the expectation value [31]. We consider the total energy
as the cost function C =

∑
j Cj =

∑
j⟨⟨Ej⟩⟩ for the variational algorithm such that the minimum value of

the cost function represents the ground state solution. Figure 2 depicts the quantum circuits to evaluate
the kinetic, potential and interaction energies.

The group at TUC implemented (see arXiv:2403.16426) the circuits on the digital gate-based quantum
devices, ibmq-mumbai and ibmq-kolkata, both of which feature identical topology and basis gate sets.
These two devices were selected due to their availability and our limited access to IBMQ processors.
The target is n = 2 (n′ = 7) qubit system with g = 5000 and design the quantum ansatz tailored to the
strong nonlinearity case, such that each qubit has a Hadamard gate followed by a layer of parameterized
single-qubit Ry rotation gate, as shown in Fig. 3(a). It is important to highlight that our goal here is to
analyze the performance of evaluating the cost function on the quantum devices; therefore, we restrict
the variational space, which might not include the exact ground state. The simplified ansatz of Fig.
3(a) offers two advantages. The first advantage is the absence of CNOT gates, resulting in quantum
circuits with fewer entangling gates and a shallow circuit depth. Consequently, the quantum circuits to
measure kinetic, potential, and interaction energies consist of 14, 59, and 70 (33, 160, and 124) CNOT
(single-qubit) gates, respectively. The second advantage is that, for the zero value of each variational
parameter, the quantum ansatz generates a trial state with over 99% fidelity with the exact ground state
in the strong nonlinearity regime. This insight allows us to restrict the variational space closer to the
ground state, such that even for the non-zero but smaller values of the variational parameters, the trial
state maintains considerable overlap with the ground state. With this setting, we execute the variational
algorithm in the presence of hardware noise, where each parameter of the ansatz is initiated at zero value
(red point in Fig. 3(b)). The classical optimizer explores the two-dimensional variational space for a few
iterations before converging toward the zero values of the variational parameters (a green point in Fig.
3(b) indicates the set of final values of the variational parameters).

With these pre-trained quantum circuits, we measure the energy cost function and fidelity of state
probabilities in both noiseless simulations and noisy settings of simulations and digital quantum hardware.
It is worth noting that, unlike the noisy simulations, quantum hardware simulations exhibit qubit reset

noise. Fig. 3(d) demonstrates the percentage fidelity %F = (1−
∑2n−1

k=0

[
|ψGS|2− |ψvar,k|2

]
)× 100 of the

trial state probabilities with a maximum disparity of 0.25% between noiseless simulations and quantum
device simulations, highlighting the high-fidelity preparation of the trial state across the two devices.
Additionally, the evaluation of the energy cost function and components in both noiseless (depicted in
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Figure 3: The performance of evaluating the cost function on IBM Q devices. Panel (a) shows the
simplified quantum ansatz adopted for the quantum device demonstration of the variational algorithm.
Panel (b) represent the training of variational parameters, where red (green) marker highlight the initial
(final) point of the classical optimization. Panel (c) shows the energy ⟨⟨E⟩⟩var vs iterations of classical
optimizer for g = 5000, n = 2 (n′ = 7). Here, blue (black) color indicate the noisy (noiseless) simulations,
while purple and cyan colors represent simulations performed on ibmq-mumbai and ibmq-kolkata de-
vices, respectively. Moreover, the blue, brown, pink, and gray colors highlight the region of one standard

deviation. Panel (d) shows the fidelity %F = (1 −
∑2n−1

k=0

[
|ψGS|2 − |ψvar,k|2

]
) × 100 of the trial state

probabilities with respect to the ground state solution. Panel (e, f, g) shows the quantities ⟨⟨EK⟩⟩δ2,
⟨⟨EP ⟩⟩/N , and ⟨⟨EI⟩⟩δ/g, and corresponding standard deviations.

black) and noisy (depicted in blue) simulations, as shown in Figs. 3(c), 3(e-g), aligns with the findings
presented in Report 6.1, with differences and variances stemming from the impact of quantum noise.

Figs. 3(c) and 3(e-g) show the energy cost function and individual components measured on the
ibmq-mumbai (in purple color) and ibmq-kolkata (in cyan color) devices. The results exhibit behav-
ior akin to those observed in the noisy simulations. Here, the qubit reset noise, causing imperfect
initialization of ancillary qubits and quantum registers, further impacts the encoding (preparation) of
the potential function (variational state) and the execution of the adder circuit, resulting in significant
increases in standard deviation values. These findings reveal large errors and variances, thereby high-
lighting the limitations of the current NISQ devices in executing the variational algorithm for nonlinear
cost functions.

Data presented here regarding hardware implementation is available at DOI 10.25592/uhhfdm.16680
while the comparison with classical emulation of noisy quantum hardware is provided at 10.25592/uh-
hfdm.16129.
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6 Burgers’ Equation

Another problem tackled so far is the Burgers’ Equation. It is an object of great interest because it is
the simplest model where we can observe non-linear effects in fluids such as shockwaves, turbulences and
traffic flow due to the competition between diffusion and the non-linear convection. Its one dimensional
form reads

∂u(x, t)

∂t
= u(x, t)

∂u(x, t)

∂x
+ ν

∂2u(x, t)

∂x2
, (4)

where u(x, t) is the spatiotemporal distribution of the velocity field of the fluid. ν represents the viscosity
of the fluid. We solve this equation by discretizing both position and time. We use the Euler method to
discretize in time:

∂u(x, t)

∂t
=
u(xi, tj + dt)− u(xi, tj)

dt
. (5)

and the final central difference to discretize in space:

ν
∂2u(x, t)

∂x2
= ν

[
u(xi + dx, tj)− 2u(xi, tj) + u(xi − dx, tj)

(dx)2

]
(6)

u(x, t)
∂u(x, t)

∂x
= u(xi, tj)

u(xi+1, tj)− u(xi−1, tj)

2dx
, (7)

To fulfill the normalization of the wave function we use an extra parameter:

u(x, tj) = λ0jU(θ⃗j)|0̄⟩, (8)

This equation translates into five measurements:

E1 =

[
1− 2ν

dt

(dx)2

]
⟨0̄|Û†(θ⃗j)Û(θ⃗j+1)|0̄⟩, (9a)

E2 = ν
dt

(dx)2

[
⟨0̄|Û†(θ⃗j)ÂÛ(θ⃗j+1)|0̄⟩+ ⟨0̄|Û†(θ⃗j)Â

†Û(θ⃗j+1)|0̄⟩
]
, (9b)

E3 = λ0j+1

dt

2dx

[
⟨0̄|Û†(θ⃗j)D̃

†AÛ(θ⃗j+1)|0̄⟩ − ⟨0̄|Û†(θ⃗j)D̃
†Â†Û(θ⃗j+1)|0̄⟩

]
. (9c)

where E1 emerges from the time derivative and the Laplacian, E2 from the remaining terms in the
Laplacian and E3 from the convection term.

The cost function to evaluate will be:

C(λ0j+1, θ⃗j) = |λ0j |2 + |λ0j+1|2 − 2λ0j+1λ
0
j (E1 + E2 + E3), (10)

As in the 6.1 work package report, the results presented in this section are quantified using the Mean
Squared Error (MSE) metric and the respective standard deviation (σ):

MSEj =
1

N

N∑
i

[uC(xi, tj)− uQ(xi, tj)]
2 (11)

where uC(xi, tj) and u
Q(xi, tj) are the classical and quantum solutions, respectively.

σ =

√√√√ 1

N

N=10∑
i

(MSEi −MSE)2 (12)
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6.1 Mitigation Strategies

An intrinsic property of NISQ devices running algorithm and quantum circuits are its fragility against
coherent and incoherent errors. While the former can be corrected using optimal quantum control or
machine learning techniques, the latter can not be fully corrected but instead they can be mitigated.
Nowadays, mitigation procedures require running the same circuit several times in order to characterize
and remove the accumulated error in the hardware allowing us to achieve solutions that are resistant
against the decoherence/depolarization errors.

Thus, we use the Zero Noise Extrapolation (ZNE) mitigation technique [32] to our circuits. Roughly
speaking, ZNE consists in evaluating an expectation value of our interest at different noise values to
extract the ideal (noiseless) one inferred by extrapolating the previous observable. We increase the noise
level in our quantum circuit by applying gates that in the noiseless limit corresponds to the identity, but
in the real implementation it accumulates errors. In the context of QCFD project, the largest sources
of errors corresponds to the two-qubit gates - the CNOT gates. Given that applying two of them we
get the identity, we increase the noise of our circuit by replacing each CNOT with three and then five
CNOTs, respectively.

The results were then fitted to a quadratic curve. An example is shown in figure 4.

Figure 4: Example of Zero Noise extrapolation with a quadratic fit. The extrapolated value, 0.0867 is
considerably closer to the ideal value, 0.110, than the measured value, 0.0592. We used IBM Fez

When executing on IBM devices we further employ Pauli Twirling [33], a technique that allows us
to tailor quantum noise so that ZNE is more effective, and Twirled Readout Error eXtinction (TREX)
[34], a technique that reduces the biases introduced in expectation values due to error in measurements.

6.2 Preliminary IBM results

Armed with these techniques we moved on to the actual implementation of the Burger’s equation on the
IBM quantum platform. We set our parameters as ν = 0.01 for the viscosity, and assume that the initial
field distribution has a sinusoidal profile u(xk, 0) = sin(2πxk/N), where N = 2n is the discretization
length. Given that NISQ devices are still noisy we encode the field in n = 3 qubits.

In order to mitigate the effect of the noise while running the variational algorithm, we demand that
the circuit encoding the problem be as shallow as possible. In this direction, following the proposal in
workpackage 6.1, we use an ansazt consisting of four parameters, four controlled rotations and two
CNOTs. This Ansatz will require a minimum of 10 CNOTs and the necessary single-qubit operations to
encode in a quantum computer.

6.2.1 Tiling

IBM cloud platform based on qiskit works by generating sessions, consisting in fixed amount on time
for executing quantum circuits. In a preliminary stage, we aim to run sequentially our variational circuit

This project receives funding from the European Union’s Horizon 2020 HORIZON
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Figure 5: Ansatz to solve the Burgers’ equation

with ZNE with a large amount of measurements i.e, we compute one part of the cost function at the time.
As consequence, we run out the dedicated session time without finishing the time step. We circumvent
this limitation by employing Tiling where we encode the different circuits of the cost function in a
bigger one using all the resources of the hardware. We have used qiskit transpiler to select the best
available qubits. The trade-off of this techniques relies in a substantial amount of time required in the
session (approximately five-fold speedup) at the expenses of using qubits whose performance is more
susceptible to coherent noise (lower two-qubit gate fidelities) and incoherent noise (loss of quantumness).
Another consideration about the techniques is that as we are using a larger number of qubits from 8 to
32, classical simulations are no longer accessible, making necessary the use of the real hardware. Fig 6
depicts an example of how do we implement the tiling method.

Figure 6: Example of the Tiling proposed in the hardware IBM fez where we encode different circuits
in different parts of the hardware (red blocks in the figure). Dark blue dots correspond to qubits with
small readout errors.

6.2.2 Sherbrooke

Using this techniques we manage to run a single time step of 0.3 (s) on ibmq-Sherbrooke. The experi-
ments were conducted from 25/08/2024 to 24/09/2024 spanning multiple calibrations of the device. The
data obtained is available at the workpackage repository. We plot the field solution of the Burgers’
equation in 7. By comparing with the classical solution, we obtain a MSE of 0.262.
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Figure 7: Field obtained from running the Algorithm on ibmq-Sherbrooke for a single time step dt = 0.3.
The field itself was obtained by simulating the Ansatz with the parameters extracted from the quantum
computer

We should mention that even though the achieved MSE is large, we can still observe nontrivial
behavior in the fluid as the shock-wave given by the abrupt change of the field profile. This is to
date the first prototype/evidence of quantum computer’s capability to capture nontrivial properties of
fluids by using variational algorithm for solving PDEs. Additionally, the presence of the shock-wave
also demonstrates the capability of the hardware to produce a solution that is not just random noise
even though the variational circuit has large depth with approximately 100 CNOTs gates, over different
calibrations along the period where the experiments were conducted. Lastly, we have to point out that
ibmq-Sherbrooke is not part of IBMs most cutting edge computers. Indeed, given the rapid development
of the field new hardware have been made recently available based on a tunable architecture exhibiting
high fidelities. Therefore, we can remain cautiously optimistic about future prospects for this project.

6.2.3 Future Directions

Given the results presented so far, we establish 3 important avenues to obtain a better solution to the
Burgers’ equation.

The first is to simply use better hardware. This obviously will help us achieve better results, but
better hardware is a result of a massive research effort. Beyond using the latest machines made available
by IBM, we are limited by the current available technology.

The second path consists in reducing the number of two-qubit gates used in the algorithm. To achieve
this further reduction we focused in replacing the CRY gates, which are translated into 2 CNOT gates.
These are replaced by a single qubit rotation by angle θ, a CNOT and an inverse rotation by angle −θ so
that when the CNOT is not activated the action is just the identity. Although this does not reproduce
the action of a CRY perfectly by introducing an extra parameter we can still generate a Hilbert space big
enough to contain the solution to the equation. This change allows us to save 5 CNOTs in the Ansatz
and for the deeper circuits it translates to a ≈ 20% reduction in the number of two-qubit gates, after
transpiling. The new ansatz can be seen in Fig. 8.

The third path forward consist in the application of new mitigation techniques. In that line, we
followed the framework of [35] to extract more information regarding the action of noise over our circuit
by making measurements before the second Hadamard gate over all qubits. This way, we can compare
the fraction of measurements where all qubits remain in the |0⟩ state with the fraction of measurements
where only the control qubit remained in |0⟩. Given that the majority of the noise comes from two-qubit
gates, this fraction should be independent of the rotation parameters and of the Hadamard gates.

By doing this procedure, we can estimate how much of our system has left the desired state |ψ⟩⟨ψ|. If
we assume our noise is modeled by a depolarizing channel, the evolution of the system when the control
qubit is in |0⟩ will be:
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Figure 8: New Ansatz with only single gate rotations

|0N ⟩⟨0N | → (1− λ)|0N ⟩⟨0N |+ λ

N2
I (13)

and in the |1⟩ will be:

|10⟩|0N−1⟩⟨0N−1|⟨10| → (1− λ)|10⟩|ψ⟩⟨ψ|⟨10|+
λ

N2
I, (14)

where I represents the identity. Given that the identity will affect the probability of measuring |0⟩ and
|1⟩ on the control qubit in the same way, in this model the effect of the noise on the expectation value
of any operator will be to effectively reduce the measured result by a factor of (1− λ):

⟨E⟩ideal =
⟨E⟩

(1− λ)
(15)

The factor (1 − λ) can now be extracted from the fraction of shots measured at |0⟩N and the number
of shots the controlled qubit was measured at 0, that is. We tested this method and Zero Noise Ex-
trapolation on ibmq-Fez, one of their most recent quantum computers, on one of the deeper circuits, for
multiple random parameters. The results obtained are presented in Table 2

The distance d is simply the absolute difference between the ideal result and the obtained value,
either through ZNE or depolarizing mitigation. The new mitigation technique was better in every run
With the exception of run 6, where the ideal result was 0. This is to be expected given that depolarizing
noise in a Hadamard test has an expectation value of zero, meaning that in this case this kind of noise
does not change the measurement.

The obtained factors 1 − λ are also plotted in Fig. 9. With the exception of run 2, we can see that
the values are always around 0.43, which demonstrate that the this method is robust against different
system calibrations and temporal drifts.

Figure 9: Different values of 1− λ obtained for different random parameters
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Run dZNE dMitigated

1 0.075 0.006
2 0.068 0.032
3 0.057 0.008
4 0.055 0.016
5 0.072 0.024
6 0.009 0.017
7 0.023 0.013

Table 2: Relative distance between the ideal value expected for each run and the value extrapolated via
ZNE and the mitigated value, respectively

Data presented here regarding hardware implementation is available at DOI 10.25592/uhhfdm.16718
while the comparison with classical emulation of noisy quantum hardware is provided at 10.25592/uh-
hfdm.16108.

6.3 Emulation on PlanQC simulator

The simulations are performed by first compiling to the native gate set of planqc’s hardware. This
gate set comprises global RX(θ) = eiθX/2 rotations, local RZ(θ) = eiθZ/2 rotations and entangling
CZ = diag(1, 1, 1,−1) gates. Any single-qubit unitary U can be decomposed as

U(α, β, γ) = RZ (γ)RX

(
−π
2

)
RZ (β)RX

(π
2

)
RZ (α) . (16)

Note that the two RX rotations have opposite angles, and thus they can be performed on all atoms
simultaneously if the RZ rotations are performed locally, since they will cancel out on all spectator
atoms. Together with the two-qubit entangling operation, this thus forms a universal gate set for quantum
computation.

Once the circuits have been decomposed to their native gate set, we then add a circuit-level noise
model that is specific to planqc’s neutral-atom hardware. After each gate, we therefore introduce an
error channel

E(ρ) =
∑
α

KαρK
†
α, (17)

where Kα are the Kraus operators. This noise model has been obtained from simulations of few-atom
physics, which includes the finite temperature of the individual atoms, the recoil induced by the laser
fields, amplitude and phase noise on the laser fields, and spontaneous decay. For the RX and CZ gates, we
choose three realistic parameter regimes, which we label as ‘low’, ‘medium’ and ‘high’. These correspond

Figure 10: Results from the integration of the Burgers’ equation for a time step dt = 0.3 with 3 qubits.
The solution obtained with an Euler step (‘Classical state’) is plotted along with the solution obtained
using the variational optimization (‘Noise-free’). The noisy simulations are compared with different
fidelities (‘Low’, ‘Medium’ and ‘High’) of the native gates in the neutral-atom platform.
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to fidelities of 99.5%, 99.8%, 99.9% for the RX gate. and 99.4%, 99.8%, 99.9% for the CZ gate. The
RZ gates have a negligible error rate, since they are physically realized by inducing light shifts on the
atoms, which are insensitive to most of the leading sources of error.

In Fig. 10, we show the results obtained from a single integration step of the Burgers’ equation for a
single time step. Already with a single layer, a relatively good match with the classical time evolution.
With the addition of noise, a good overlap with the noise-free solution is achieved already from ‘medium’
gate fidelities. Data from the simulations can be found at DOI 10.25592/uhhfdm.16690.

Regarding a practical implementation, the circuits can be realized on a neutral atom array with
nearest and next-to-nearest neighbor connectivity on a triangular lattice, without requiring swap gates.
Furthermore, neutral atom arrays have the potential to natively multi-controlled gates such as CCZ ,
which could significantly reduce the circuit depth (and thus decrease the error) of the circuits with the
adder gadget.

7 European Hardware

The experiments that were successfully run did so via access to the IBMQ cloud devices. Aside from this
access, which was already limited and sparse, the main goal of the funding program is rather to create
synergies between European hardware and software developers. However, thus far, European hardware
that is publicly accessible is still catching up in terms capabilities, and at the time of this report minimum
system requirements were not sufficient for running the algorithm even for minimal problem instances.
Nonetheless, we expect that in the remaining couple of years that this situation should significantly
improve, and we will soon start running the QCFD code on European hardware.

7.1 Experiments planned upon scheduled hardware availability

• As part of the European initiative EuroHPC, as well as other potential routes such as the Open-
SuperQ+100 project, we will soon be able to gain access via cloud platforms (e.g. at FZJ) to such
providers as IQM, Eleqtron, and Pasqal.

• FZJ in-house devices will also be available via these projects, as well as primarily through the
German demonstrator project QSolid, working closely with the QCFD FZJ theory team. The
facilities being very young, however, it will slightly lag in availability behind some of the others.

• Via a partnership with TUC, AQT will also offer ion trap quantum processors capable of running
the depths and widths of circuits required. This may result in dedicated access which substantially
improves throughput.

• Public cloud access to TU Delft QInspire will provide further devices, with several solid state chips
slated to become available during the next year.

• Partner PlanQC will offer classical simulators in the short term, with hardware beginning to come
online only in the following year.

7.2 Improvement feedback

Through our various tests, attempted runs, and large sweeps of parameter regimes through classical
gate-level simulations, there is already a significant know-how that we have gained with respect to
implementation of the algorithm. This in turn provides tangible data on areas of needed improvement
from which the hardware providers can benefit.

• Long variational optimizations (single execution of the algorithm last at least 200ms) combined
long queues on the cloud implies session times should be substantially increased to beyond 16 hours.

• Provided simulators do not accurately capture the role of noise, as evident by the increase of MSE
from the expected 0.138 on ibmq-Sherbrooke on the report from workpackage 6.1 to 0.262 in
practice. This is partially attibutable to tiling - we increase the number of qubits used beyond
our current capabilities to classically simulate them and at the same time are forced to use worst
performing qubits;
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• One of the main bottlenecks of this and other variational (Hadamard-test) type of algorithms is the
very large number of quantum shots to estimate observables, which is only made worse when error
mitigations is incorporated. This is especially a problem with readout via fluorescence imaging
which takes up a large fraction of the execution time. In general, improved duty cycles and/or
better options for dedicated system access would alleviate some of these difficulties.

• Current topologies are not well suited for variational algorithms with Hadamard tests. These are
quite often designed for error correcting codes, which are still many years away from overcoming
the performance setbacks (from topology or otherwise). Multiply-connected architectures are much
more suitable given the standard need for multiply-controlled gates as well as the need to reduce
swapping of qubits as much as possible (as it dramatically increases circuit depth).

• The variational circuits require variable angles of rotation for the gates. It should be fairly straight-
forward to include analog gates in the gate-set, e.g. the fsim gate, rather than construct these from
constituent digital gates, since it creates an overhead factor of 2-3.

• Other improvements in gate sets would also be highly beneficial. For example, optimized swapping
gates, or the inclusion of CPHASE gates (which are native to most architectures, if not the most
efficient) would be very suitable given the large number of controlled operations. Another possible
avenue would be to include higher level (e.g. qutrit) gates which is well known to give a significant
potential reduction in circuit depths.

• In general, error rates at the fractions of percent level are not low enough for standard circuit sizes,
even for demonstration purposes. These should be reduced by a factor of 2-3 to be commensurate
with the depths, which should also be achievable via common control theory techniques.

8 Summary

In this report, we have shown first steps towards implementation on quantum hardware, which are
presently bottlenecked by the throughput and error rates of the systems. In particular, we have com-
pleted systematic noisy emulations of the quantum hardware to determine the prospects of running deep
variational circuits on present quantum hardware and based our experiments on these parameter regimes.
Thus far, cloud European hardware has been very sparse, but we have successfully run instances of the
Nonlinear Schrödinger equation and of the Burgers’ equation on IBMQ, albeit with quite noisy circuits,
even when compared to the noisy emulation. Our investigation has established the principle areas for
improvement that are needed for increasing prospects of running NISQ era variational algorithms on
European hardware.
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