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Executive Summary 

The Quantum Computational Fluid Dynamics (QCFD) project is dedicated to advance quantum computing for 
Computational Fluid Dynamics (CFD) simulations and their use in industry.  
The deliverable D1.1 provides input to other work packages as part of Work Package 1 (WP1) ("Core examples and 
algorithms for CFD"). This includes a collection of elementary CFD benchmarks as well as first application-oriented 
examples and their solutions based on conventional CFD methods, which are partly flanked by additional quantum-
based solutions. 

In accordance with the data management plan (DMP), D1.1 follows the FAIR data principles – findability, accessibility, 
interoperability and reusability – the associated datasets are provided with a detailed metadata structure, unique 
identifiers and the corresponding documentation. This ensures that the data is easily accessible and usable by third 
parties. Public access is granted via a dedicated research data repository (FDR) hosted at the University of Hamburg 
(UHH), www.fdr.uni-hamburg.de/communities/qcfd/. To make it easier for users to keep track, all datasets 
belonging to the project are collected in a QCFD community group on the mentioned data server. 
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1 Introduction 

The rise of digital computers has made CFD an indispensable tool in today's engineering fluid mechanics. As a first 
step, the D1.1 result provides CFD data obtained from classical grid-based CFD methods as a benchmark for quantum 
CFD algorithms. 

It is important to understand the TR-level of quantum CFD and the nature of the algorithms. When creating test 
cases, we considered the limitations of quantum algorithms and hardware, which represents the state of the art at 
the time of compiling the deliverable. Quantum hardware-based strategies [1, 2, 3, 4] are currently still very 
expensive for hardware reasons, which is why a coarse resolution was preferred for the development of the 
corresponding algorithms and their benchmarking. It is for this reason that none of the applications proposed here 
are complex relative to the current state of classical CFD (although it is planned that they will become so in future). 
Hence, when we speak of ”advanced” or ”complex”, this is often relative to coarse grid scalar transport equation 
and elementary examples provided in D1.1 are designed to match what is achievable in QCFD on a one-to-one basis 
in terms of integration points and physics. On the contrary higher resolutions are possible in conjunction with 
quantum-inspired approaches [5, 6], e.g., Matrix-Product-State (MPS) methods, and quantum computers do not 
necessarily have to be used. The cases documented in D1.1 aim to serve both strategies which underpins the multi-
directional research of the project. Within a best-case scenario QCFD could be capable of solving complex multi-
physical problems as they, e.g., occur in the battery design of battery electric vehicles (BEV), where a generic case 
has been added to D1.1. 

Due to the strong links of quantum algorithms with established CFD approaches, which are inherent components of 
quantum-based algorithms, the consortium considers comparison with classical methods and (if possible) analytical 
solutions to be essential, especially for lower resolutions. This is because the details of the convergence process are 
as important to the development of the quantum algorithms as the absolute accuracy of the results and might 
provide insight into the more nuanced facets and sub-components of the algorithms. 

Mind that there are no standard practices in quantum computing for solving CFD problems. We would like to point 
out, that issues surrounding the definition of scalable quantum algorithms and quantum computing hardware/ 
emulation limit the resolution as well as the complexity achievable by quantum algorithms at this stage. We believe 
that there is no point in comparing quantum performance to classical performance at this stage since the quantum 
algorithms are incomplete, un-optimized and generally at a low maturity level. Quantum advantage is additionally 
only expected to become pronounced at scale. The objective of D1.1 is thus not to compare performance, but to 
assist the development of the quantum CFD algorithms. Effort comparisons with CFD results are not to be expected 
at the time of compiling the deliverable, since QCFD and its hardware are not ready for comparability. Hence, the 
data provides a basis for evaluating methodological differences but does not give information on the quantum 
hardware performance. 

Dataset-specific documentation to support the interpretation and outline the usability of the data is given. 
Furthermore, the datasets are accompanied by metadata, including parameters, software versions, library 
dependencies, and simulation time frames. Lastly, the data sets are enhanced by a keyword-based search system 
incorporating Digital Object Identifiers (DOIs). With this documentation process, we intend to guarantee the 
replication of our (and other) methods and promote accessibility to the scientific and industrial sectors. The 
complete data is made available, according to the submitted Data Management strategy, in a dedicated research 
data repository (FDR) hosted at the university of Hamburg (UHH), www.fdr.uni-hamburg.de/communities/qcfd/, and 
associate within the project community QCFD. 
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2 Data Description  

Deliverable 1.1 aims to support the analysis of newly developed QCFD methods and to provide a comparison with 
CFD datasets obtained from classical, established mesh-based Finite Difference (FD) or Finite Volume (FV) simulation 
methods. Where available, the quantum results obtained in the project and their publications are listed as an 
additional dataset. The data source (FD, FV or QCFD) is clearly indicated in the report and the dataset. 

To reduce the level of complexity, only structured grid examples are considered. Moreover, the document 
distinguishes between the (a) the spatial dimension of the problem, (b) the time-dependency of the problem, (c) the 
amount of (coupled) equations – i.e., single/multi-physics approach, (d) the non-/linearity of the underlying 
equation, (e) the influence of turbulence, (f) the available number of different resolutions/grids, (g) the scientific 
and the industrial relevance, (h) the availability of QCFD results and (i) the specific focus of the case. 

This reminder of this Section defines the data processing pipeline, the quality/accuracy requirements as well as the 
suggested performance indicators, e.g., fail/pass criteria, cf. Sec. 2.2. 

2.1 Accuracy 

Data accuracy is fundamental to meaningful benchmarking and is therefore a key consideration. In this context, the 
following guidelines are used: 

• List of file formats with the corresponding accuracy, accessible without compression 
▫ Fortran std file format 
▫ openfoam std file format 
▫ ... 

• Double-precision floating-point number format 
• For complex numbers, the 53-bit significant precision of 16 decimal digits is divided between real and 

imaginary parts.  

2.2 Assessment Criteria 

For benchmarking purposes, all cases are designed to evaluate the comparison results based on the following 
criteria: 

• Absolute Error: Measure of the deviation between two paired variables. 
• l2- (or Euclidean) norm: In general, a norm consists of a function mapping from a vector space to a non-

negative real number. In particular, the l2-norm is defined as the square root of the scalar product of a 
vector with itself. 

• Fidelity: Often understood as a similarity measure and formed by the scalar product of two normalized 
vectors. 

• Trace Distance: Measure of how distinguishable two (quantum) states are. For pure quantum states, the 
trace distance is defined as the square root of one minus fidelity. 
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3 Cases 

This Section discusses the currently available benchmark cases of the D1.1. These have been chosen to be 
representative of different (Q)CFD research branches. 

The cases are divided into three main categories according to their spatial dimension, i.e., indicative 1D textbook 
cases, 2D and 3D applications. Each category is divided into subsections containing different benchmarks that are 
uniquely identified by an individual DOI. 

Note that compressibility of the fluid is neglected in all cases due to the small Mach numbers of 𝑀𝑎	 < 	0.1, where 
the Mach number 𝑀𝑎 = 𝑢/𝑎 indicates the relation between flow speed 𝑢 and the speed of sound 𝑎.  
The individual numerical experiments are characterized by non-dimensional parameters, in particular the 

• Reynolds number 𝑅𝑒 = 𝑢𝐿/𝜈 = !"#$%!&'	)*$+#
,!-+*.-	)*$+#	

 (𝑢: characteristic velocity, 𝐿: characteristic length, 𝜈: kinematic 
viscosity) 

• Nusselt number 𝑁𝑢 = ℎ𝐿/𝑘	 = +*",#+%!,#	/#&%	%$&"-)#$
+*"0.+%!,#	/#&%	%$&"-)#$

 (ℎ: heat transfer coefficient, 𝐿: characteristic length, 𝑘: 
thermal conductivity) 

• Peclet number 𝑃𝑒 = 𝑢𝐿/Γ = &0,#+%!*"	%$&"-1*$%
0!)).-!,#	%$&"-1*$%

 (𝑢: characteristic velocity, 𝐿: characteristic length, Γ: 

kinematic diffusivity). 

For time-dependent or pseudo time-dependent problems, the numerical procedures are additionally characterized 
by Courant-numbers, also known as CFL numbers, i.e., 𝐶2 = 𝑢Δ𝑡/Δ𝑥 for convection and 𝐶3 = 𝜈Δ𝑡/Δ𝑥4 for diffusion. 
Here Δ𝑡 refers to the employed time step that is used to advance the simulation and Δ𝑥 represents a typical (local) 
grid spacing. 

3.1 1D Textbook Cases  

This first category covers simple steady and unsteady heat conduction problems, fully developed (laminar) shear 
flows and other well-known 1D examples for single governing differential equations using Finite Volume (FV) and 
Finite Difference (FD) methods. These cases focus on the development of the QC (not quantum-inspired) algorithms. 
Discretizations are relatively coarse in order to limit hardware requirement and ensure the applicability of the 
benchmark data to current quantum hardware. 

A detailed description for the corresponding numerical experiments is given below. Note that, in general, the density 
𝜌	[𝑘𝑔/𝑚5] and the viscosity 𝜈	[𝑚4/𝑠] were both set to 1 to obtain the data provided. Moreover, all but one case 
employ an equidistant spacing and the presented cases do not cover a grid sensitivity analysis.  
Table 1 summarizes the features of the 1D test cases including a brief outline of the respective focus and the 
engineering relevance. The focal points refer to (1) boundary condition, (2) non-homogeneous advection, (3) 
unsteady effects, (4) advection-diffusion interplay and (5) nonlinear effects. The governing equation refers to 
diffusion (D) diffusion reaction (DR), unsteady diffusion (uD), unsteady advection diffusion (uAD), steady advection 
diffusion (AD), and unsteady convection diffusion (uCD) problems. In addition to the classical methods (FD/FV), the 
Table also contains possibly additional results obtained from QC methods (Q). 

Textbook Cases Eqn. Spatial Temporal # Eqn. non/linear Flow # Grids Num. Focus Ind. Relev. 
Shear Flows D/DR 1D steady 1  laminar - FD - 10% 

Heat Conduction uD 1D un/steady 1  laminar - FD+Q (1,3) 25% 

Nozzle Flow uAD 1D steady 1 linear laminar - FV (2,3) 15% 

Wave Equation uD 1D unsteady 1 linear laminar - FD+Q (3) 10% 

Adv.-Diff. Problem AD 1D steady 1 linear laminar - FD+Q (4) 25% 

Burgers Equation uCD 1D unsteady 1 nonlinear laminar - FD+Q (5) 30% 

TABLE 1: SUMMARY OF SELECTED 1D CASES (3.1). 
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3.1.1 Unidirectional Shear Flows (FV) 

Fully developed unidirectional shear flows are classical one-dimensional benchmark flows. The response of a 
simulation procedure to shear is crucial, since it relates to the wall shear stress and the fluid dynamic drag of 
obstacles. 

The first case is concerned with a plane Couette flow, describable by 

𝜈
𝜕4𝑢
𝜕𝑦4 = 0. 

It refers to an infinitely long resting horizontal bottom wall and a corresponding moving horizontal top wall in a 
horizontal periodic arrangement (cf. Figure 1). The top wall moves with a unit velocity 𝑢6AAA = 1	[𝑚/𝑠] in horizontal 
direction. The flow is considered fully developed, and the velocity does not change along the horizontal direction. 
Due to the fully developed state, the influence of convective terms vanishes 	(𝑃𝑒, 𝑅𝑒 → 0) . Emphasis is thus 
restricted to a velocity profile along the 1D vertical axis, i.e., along the gap of size 2𝛿 = 0.2	[𝑚] between the two 
walls. The considered Reynolds number reads 𝑅𝑒 = 2	𝑢6AAA𝛿/𝜈 = 0.2,	using a unit kinematic viscosity 𝜈 = 1	[𝑚4/𝑠]. 

 

 

FIGURE 1: SCHEMATIC OF THE PLANE COUETTE FLOW (3.1.1). 

The 1D domain is discretized using 10 homogeneous interior cells along the vertical of equidistant height Δ𝑦 =
0.02	[𝑚]. Dirichlet conditions for velocity are assigned to zero (bottom wall) and 𝑢6AAA (top wall). Spatial derivatives of 
the diffusive terms employ central differencing. Results are available via DOI 10.25592/uhhfdm.14201. 

Discretization: equidistant in space   
Features: 1D, steady, diffusive scalar transport with Dirichlet conditions  
Output: 𝑢(𝑦7 , 𝑡8)  

 

A second case refers to a plane channel flow, viz.  

1
𝜌
𝜕𝑝
𝜕𝑥	 − 𝜈

𝜕4𝑢
𝜕𝑦4 = 0, 

where 𝑢 is a velocity, 𝜈 is a (unit) kinematic viscosity, 𝜌 is a (unit) density and 𝜕𝑝/𝜕𝑥 is a given pressure gradient. It 
distinguishes from the previously covered Couette flow, as the flow is not driven by a moving wall, but a (given) 
constant horizontal pressure gradient. The unidirectional velocity profile is again considered to be fully developed, 
and convective fluxes are without influence (𝑃𝑒, 𝑅𝑒 → 0). The setup is depicted in Figure 2 and again only involves 
a 1D domain in the direction of the vertical axis between the two walls. 

 

2𝛿	

𝑢6AAA 

𝑦	
𝑥	
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FIGURE 2: SCHEMATIC OF A PLANE CHANNEL FLOW (3.1.1). 

The (laminar) flow is symmetric to the horizontal center axis and the numerical model covers only half the domain. 
The cross-section is parameterized by 𝛿 = 2/3	[𝑚]. The bulk velocity 𝑢6AAA, i.e., the average horizontal velocity is set 
to 1	[𝑚/𝑠]. The smallest near wall cell is of height Δ𝑦9 = 0.02	[𝑚] and 12 cells are used to mesh the half-height 𝛿. 
Towards the centerline the discretization is recursively coarsened by 3Δ𝑦7:9 = 4Δ𝑦7 . Spatial derivatives of the 
diffusive terms employ central differencing. Results obtained for a Reynolds number of 𝑅𝑒 = 2	𝑢6AAA𝛿/𝜈 = 4/3 are 
available via DOI 10.25592/uhhfdm.14201. 

Discretization: equidistant in space   
Numerics: FD (2nd-order central in space) 
Features: 1D, steady, diffusion-reaction scalar transport with Dirichlet and symmetry conditions 
Output: 𝑢(𝑦7 , 𝑡8) 

3.1.2 Steady and Unsteady Heat Conduction (FD/QCFD) 

The heat conduction represents an initial step towards the analysis of scalar transport problems. The governing 
Poisson type partial differential equation describes the (unsteady) processes at 𝑃𝑒, 𝑅𝑒 = 0, i.e., advancing a balance 
between reaction and diffusion influences. Modeling these physical phenomena is a first milestone that needs to be 
reached during the development of novel algorithms. 
The test case serves as an ideal candidate to verify the quality of the implementation for a wide range of technical 
boundary conditions, and the deliverable covers both steady and unsteady problems with various boundary 
conditions. Simulations solve the differential equation 

𝜕𝑦
𝜕𝑡	 − 𝛼

𝜕4𝑦
𝜕𝑥4 = 0 

for a unit thermal diffusivity 	𝛼 = 1	[	𝑚4/𝑠]. All results refer to a 1D spatial domain given by the unit interval 𝑥 ∈
[0, 1]	[𝑚] and an equidistant spatial step size Δ𝑥. Different interior domain points 𝑁6	are employed that correspond 
to the different numbers of qubits 𝑛, i.e., 𝑁6 = 4	(𝑛 = 2)	 to 𝑁6 = 16	(𝑛 = 4) with	Δ𝑥 = 1[𝑚]/(𝑁6 + 1). Spatial 
derivatives employ central differencing. For unsteady cases, time is also discretized equidistantly using a 1st-order 
backward scheme and a constant time step that ensures of 𝐶3=0.5	for all spatial employed discretizations featuring 
different time instant numbers to cover the simulation period. 

The boundary settings include the combinations of (left-right) Dirichlet-Dirichlet, Neumann-Neumann, Dirichlet-
Neumann, Robin-Robin, and periodic boundary conditions. For the sake of completeness, Table 2 gives an overview 
and defines the boundary conditions for the dependent variable 𝑦 (where different values for 𝑎, 𝑏, 𝑐 were used). 

Boundary Setting Condition 

Dirichlet - Dirichlet 𝑦(𝑥 = 0) = 𝑎, 𝑦(𝑥 = 1) = 𝑏 

Neumann - Neumann 𝜕𝑦
𝜕𝑥S |;<= = 𝑎, 		𝜕𝑦 𝜕𝑥S |;<9 = 𝑏 

Dirichlet - Neumann 𝑦(0) = 𝑎, 𝜕𝑦
𝜕𝑥S |;<9 = 𝑏 

2𝛿	
𝑦	

𝑥	
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Robin - Robin 
𝑎𝑦(𝑥 = 0) + 𝜕𝑦 𝜕𝑥S |;<= = 𝑐, 

𝑏𝑦(𝑥 = 1) + 𝜕𝑦 𝜕𝑥S |;<9 = 𝑐 

Periodic 𝑦(𝑥 = 0) = 𝑦(𝑥 = 1) 
TABLE 2: BOUNDARY SETTINGS USED FOR CASE (3.1.1). 

Available data involves classical FD results for steady and unsteady heat conduction and companion VQA results 
which were published in the Computers and Fluids engineering CFD journal [2]. The data can be found under DOI 
10.25592/uhhfdm.14123. 

Discretization:  equidistant in space and time  
Numerics:  FD (1st-order backward in time, 2nd-order central in space) 
Features:  1D, unsteady, diffusive scalar transport featuring a variety of engineering boundary conditions 
Output:   𝑦(𝑥7 , 𝑡8) 

3.1.3 Nozzle Flows (FV) 
The nozzle flow simulates the geometry depicted in Figure 3 to compute the passive scalar transport equation 

>?
>@
+ 𝑢 >?

>;
− ν >

!?
>;!

= 0. 

Convection is taken into account, i.e., 𝑃𝑒 ≠ 0, however the case is linear and the velocity 𝑢 is prescribed throughout 
the domain using mass conservation arguments. A Dirichlet value 𝜙 = 1 is set at the left inlet boundary where the 
(prescribed) velocity reads 𝑢!"'#% = 2	[𝑚/𝑠]. The right outlet boundary is described by a zero-gradient Neumann 
condition for 𝜙 , i.e., a vanishing derivative normal to the exit (outlet) plane. The remaining two horizontal 
boundaries are also assigned to zero gradient conditions.  

The Reynolds number, based on the inlet velocity and the nozzle length, reads 	Re = 𝑢!"'#%	𝐿/	ν = 2. The horizontal 
extension of the domain reads 𝑥 ∈ [– 1,+1	][𝑚]. The symmetric geometry depicts a linear variation of the cross-
section, cf. Figure 3. The top wall is specified by the two points (𝑥 = −1, 𝑦 = 1	) to (𝑥 = 1, 𝑦 = 0.5	), similarly, the 
bottom wall can be defined by (𝑥 = −1, 𝑦 = −1	) to	(𝑥 = 1, 𝑦 = −0.5	). The prescribed velocities in each cross 
section 𝑢7  follow from the continuity relation 𝑢7 ⋅ 𝐴𝑟𝑒𝑎7 = 𝑢!"'#% ⋅ 𝐴𝑟𝑒𝑎!"'#%. The cell-centered FV scheme employs 
10 control volumes with an equidistant horizontal extension of Δ𝑥 = 0.2	[𝑚]. 
Integrals are approximated using a second-order accurate mid-point rule. Spatial derivatives of the diffusive terms 
employ central differencing. Convective derivatives employ a 2nd-order linear upwind differencing scheme and time 
is approximated with 1st-order backward differences. Simulations employ a constant timestep of Δ𝑡 = 0.0001	[𝑠] 
over 3	[𝑠], recording every 100th time instant. The data is available under DOI 10.25592/uhhfdm.14203. 

Features:  Unsteady, linear 1D scalar convection-diffusion with engineering boundary conditions  
Numerics:  FV (1st-order backward in time, 2nd-order central for diffusion, 2nd-order upwind for advection) 
Grid:   The grid employs equidistantly spaced control volumes. Time steps are also equidistant. 
Output:   Recordings of the scalar field 𝜙(𝑥7 , 𝑡8) for every 100th time step starting from 𝑡 = 0	[𝑠]. 
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FIGURE 3: SCHEMATIC EXAMPLES OF NOZZLE FLOWS (3.1.3). 

3.1.4 Wave Equation (FD/QCFD) 

This application addresses a linear transport phenomenon governed by the wave equation 

𝜕4𝑦
𝜕𝑡4 − 𝑐

4 	
𝜕4𝑦
𝜕𝑥4 = 0, 

for the displacement 𝑦	[𝑚] under the influence of a constant propagation speed is 𝑐 = 1	[𝑚/𝑠]. The left and right 
boundary of the 1D unit domain 𝑥 ∈ [0, 1	]	[𝑚]  are assigned to homogenous Dirichlet boundary conditions 
𝑦(𝑥 = 0) = 𝑦(𝑥 = 1) = 0. The time implicit simulation describes the evolution of an initial Gaussian distribution 
𝑦= = exp	(−(10𝑥 − 3.5)A) over 𝑁B = 30 time steps, cf. Figure 4.  
Time is discretized with a fixed time step of Δ𝑡 = 0.05	[𝑠]. Similarly, spatial discretization employs a constant spacing 
Δ𝑥 = 1	[𝑚]/(𝑁6 + 1) for 𝑁6 = 64	interior points, i.e., 𝑛 = 6 qubits, using a FD approach. The temporal derivative 
is approximated with first-order backward differences and the spatial derivative is discretized using a second-order 
central differences.  
Available data involves classical FD and companion VQA results. The data is available under DOI 
10.25592/uhhfdm.16634. 

Features:  Unsteady, linear 1D scalar wave eqn. with Dirichlet boundary conditions  
Numerics:  FD (1st-order backward in time, 2nd-order central in space) 
Grid:   The grid employs equidistant spatial and temporal step sizes  
Output:   Recordings of the scalar field 𝑦(𝑥7 , 𝑡8) for the initial 30 time steps 

 

FIGURE 4: EXEMPLARY RESULTS FOR THE WAVE EQUATION (3.1.4). 
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3.1.5 Steady Advection-Diffusion Problem (FD/QCFD) 

As the approximation of the convective kinematics and the interplay between convection and diffusion is crucial for 
engineering applications, the steady advection-diffusion equation for the transport of a scalar property 𝜙 is 

𝑢
𝜕𝜙
𝜕𝑥 − Γ

𝜕4𝜙
𝜕𝑥4 = 0, 

which is a relevant benchmark. To this end, investigations assume a constant velocity 𝑢 = 1	[𝑚/𝑠] as well a different 
constant diffusivity values Γ	[𝑚4/𝑠], and a unit interval 𝑥 ∈ [0,1][𝑚]. The generic scalar 𝜙 is subject to Dirichlet 
boundary conditions 𝜙(𝑥 = 0) = 0 and 𝜙(𝑥 = 1) = 1. 
The ratio of the convective and diffusive transport indicates the nature of the problem and is quantified by the local 
Peclet number 𝑃𝑒C; = 𝑢Δx/Γ, where Δ𝑥 is the local grid size. For the domain and boundary conditions considered, 
the analytical solution to the problem reads 𝜙(𝑥) = [exp(𝑃𝑒CD	𝑥/Δ𝑥) − 1]/	[exp	(𝑃𝑒C;𝐿/Δ𝑥) − 1]	 , cf. [7]. 
Exemplary results are illustrated in Figure 5. 
 
Two FD results are added to D1.1. The first result covers a diffusion dominant case, cf. 𝑃eCD = 0.3. The second an 
advection dominant case, i.e., 𝑃𝑒C; = 30. The approximation of diffusive derivatives employs 2nd-order central 
differences. The convective derivative employs either 2nd-order central schemes, a 1st-order upwind differencing 
scheme (UDS), a 2nd-order linear-upwind differencing scheme (LUDS) or a 3rd order QUICK scheme. The domain is 
discretized with 𝑁6 = 16	interior points, i.e., 𝑛 = 4 qubits, with Δ𝑥 = 1	[𝑚]/(𝑁6 + 1).   
The FD results and results from a VQA simulation are accessible for validation via DOI 10.25592/uhhfdm.16634. 

Features:  linear 1D advection-diffusion equation with Dirichlet boundary conditions  
Numerics:  FD (different central & upwind-biased convective approximation  
                                                & central diffusive approximation)  
Grid:   The grid employs equidistant spatial sizes  
Output:   Recordings of the scalar field 𝜙(𝑥7)  

 

FIGURE 5: EXEMPLARY RESULTS FOR THE ADVECTION-DIFFUSION PROBLEM, CF. [7], (3.1.5). 

3.1.6 Burgers‘ Equation (FD/QCFD) 

The 1D Burger’s equation is a nonlinear differential equation that considers convective influences, i.e., 𝑃𝑒, 𝑅𝑒 ≠ 0,  

𝜕𝑢
𝜕𝑡	 + 𝑢

𝜕𝑢
𝜕𝑥 − 𝜈

𝜕4𝑢
𝜕𝑥4 = 0, 

where 𝑢 is a velocity and 𝜈 is a viscosity. The equation is often used as a simplified Navier-Stokes model and has 
applications in areas such as shock waves, turbulence, and traffic flow. Studies employ a one-dimensional unit 
domain 𝑥 ∈ [0, 1]	[𝑚],with	an	equidistant	spatial	step	size	Δ𝑥 = 1[𝑚]/(𝑁6 + 1). The domain is discretized using 

𝜙	

𝑥	0	 1	

𝑃𝑒 = 0	

𝑃𝑒 > 0	
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𝑁6 = 64 interior points, which corresponds to 𝑛 = 6 qubits. The temporal space is also equidistantly discretized 
using a 1st-order backward scheme. 
Two different Reynolds numbers are considered, cf. Figure 6. The first case is concerned with an inviscid case with a 
Dirichlet (inflow) condition with velocity of 2 [𝑚/𝑠] at the left end and zero gradient (Neumann) conditions at the 
right end. Time discretization follows from 𝐶2=0.6 based on a reference velocity of 2	[𝑚/𝑠]. The second case 
computes a viscous case at 𝑅𝑒 = 100 featuring periodic boundary conditions. The case observes a non-centered 
initial velocity distribution of a Gaussian pulse with a unit peak velocity. Time discretization follows from 𝐶2=1.0 
based on the unit velocity.   
Access to the data is provided under DOI 10.25592/uhhfdm.16634.  

 

       

FIGURE 6: RESULTS FOR THE CONSIDERED TWO 1D BURGERS EQUATION CASES (LEFT: VISCOUS CASE; RIGHT: INVISCID CASE) 
(3.1.6). 

Spatial derivatives of the diffusive terms employ central differencing whereas first-order upwind differences are 
used to approximate the convective derivative. Time derivatives follow from a first-order backward scheme. 

Discretization:  equidistant in space and time 
Numerics:  FD (2nd-order central differences for diffusion; 1st-order upwind differences for convection, 1st-
order backward in time) 
Features:  1D, unsteady, nonlinear convection-diffusion scalar transport with different boundary conditions  
Output:   𝑢(𝑥7 , 𝑡8)  
  

𝑥7 	[	] 𝑥7 	[	] 

𝑡8	[	] 𝑡8	[	] 
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3.2 2D Problems 

This Section is concerned with 2D benchmark examples. These range from simple extensions of 1D textbook cases 
to more approaches for segments of battery cooling devices, i.e., the heat exchange in double-bent channel flow, 
which also includes a grid sensitivity study for laminar and turbulent configurations. 

Table 3 summarizes the features of the 2D test cases including a brief outline of the respective focus and the 
engineering relevance. The focal points refer to (1) the predictive differences between 1D and 2D, (2) more complex 
vortical flows, (3) applications in curvilinear coordinates and (4) conjugate heat transfer between fluid and solid 
materials. The governing equation refers to diffusion (D) diffusion reaction (DR), unsteady diffusion (uD), unsteady 
advection diffusion (uAD), steady advection diffusion (AD), unsteady convection diffusion (uCD) or conjugate heat 
transfer (CH) problems. One demonstration case employs an algebraic turbulence model (TM). In addition to the 
classical methods (FD/FV), the Table also contains tensor network methods (TN) as a substep towards QC and 
possibly additional results obtained from QC methods (Q). 

2D Cases Eqn. Spatial Temporal # Eqn. non/linear Flow # Grids Num. Focus Ind. Relev. 
Heat Conduction (u)DR 2D un/steady 2 linear laminar 2 FD+Q (1) 15% 

Lid-Driven Cavities uAD 2D unsteady 2 nonlinear laminar 1 TN (2) 35% 

Curvilinear Cases uCD 2D unsteady 1,3 non/linear lam./TM 1 FD+TN (3) 35% 

S-Bent Ducts CD/CH 2D steady 4/6 nonlinear lam./TM 4 FV (3,4) 70% 

       -    

       -    

TABLE 3: SUMMARY OF SELECTED 2D CASES (3.2). 

These cases investigated in Secs. 3.2.2 and 3.2.3 are devoted to quantum-inspired approaches, that have clear links 
to both, the governing equations and the FD approximations used in classical CFD. The methods employ tensor 
network strategies to translate the discrete FD approximation of the governing equations. Solutions are not 
necessarily performed on a QC (or its emulation) but can be performed on a classical computer. 

3.2.1 2D Poisson Equation (Un/Steady Heat Conduction) (FD/QCFD) 

The 2D un/steady heat conduction is described by a Poisson equation with a source term f, viz.  

𝜕𝑢
𝜕𝑡 	or		0 = ∇4𝑢 + 𝑓,			in	a	2D	domain	Ω,	 

with 𝑢 = 𝑢(𝑥, 𝑦) and 𝑓 = 𝑓(𝑥, 𝑦). The domain refers to a unit square 𝑥, 𝑦 ∈ [0,1]	[𝑚] × [0,1]	[𝑚]. Homogeneous 
Dirichlet conditions 𝑢 = 0	  along all boundaries on a cartesian lattice with 16 × 	16  and 32 × 32	equidistantly 
spaced grid points, i.e.,	 Δ𝑥 = Δ𝑦 = 0.0625	[𝑚]  and Δ𝑥 = Δ𝑦 = 0.03125	[𝑚] . Two different source term 
distributions are investigated in steady conditions, one with a checkerboard source (Sec. 3.2.1.1) and one with a 
centered Dirac source (Sec. 3.2.1.2). Moreover, the checkerboard source case is used to simulate the initial ten time 
steps of a unit time interval with Δ𝑡 = 0.1	[𝑠] of the unsteady case on the fine grid (Sec. 3.2.1.3). The FD results are 
uploaded and listed under DOI 10.25592/uhhfdm.14241. Next to the FD results, quantum results are given. 

Discretization:  cartesian, equidistant in space; equidistant in time  
Numerics:  FD (2nd-order central differences for diffusion, 1st-order backward in time) 
Features:  2D, reaction-diffusion scalar transport with Dirichlet boundary conditions  
Output:   𝑢(𝑥7 , 𝑦8), 𝑢(𝑥7 , 𝑦8 , 𝑡E), 



 

This project receives funding from the European Union's Horizon 2020 HORIZON Research and 
Innovation Actions Program under Grant Agreement #101080085 Rev:2, Page 16 of 27 

3.2.1.1 Checkerboard Source  

We refer to the above-described steady heat conduction on a rectangular domain with Dirichlet boundary conditions 
and consider a “checkerboarding” spatial distribution of the source term (𝑓F)7,E = 𝑓v𝑥7 , 𝑦Ew as benchmark. 

Figure 7 compares the results returned by the VQA with FD results using classical central differences on the fine grid. 
The left graph shows the source term, while the other two graphs display the quantum solution (center graph) and 
the classical FD solution (right graph).  
The dataset can be found under DOI 10.25592/uhhfdm.14241. 

 

 

FIGURE 7: RESULTS FOR THE 2D STEADY HEAT CONDUCTION USING A CHECKERBOARD SOURCE (3.2.1.1). 

3.2.1.2 Dirac Source 

The solution to the steady heat conduction is approximated on the same discretized unit-square domains as in Sec. 
3.2.1.1. We again employ the above-mentioned homogeneous Dirichlet boundary conditions. A Dirac impulse 
(𝑓F)7,E = 𝑓v𝑥7 , 𝑦Ew, that is centered at Point 𝑃 =	 (0.5	[𝑚], 0.5[𝑚]).  

The comparison of classical FD (left) and VQA (center) results obtained on the fine grid are provided in Figure 8. The 
Figure reveals that the quantum results are not symmetric in radial direction. This indicates weaknesses of the ansatz 
gates used in the variational approach to parameterize the PDE solution. The example serves as an illustration of 
current QCFD challenges.  
The dataset can be found under DOI 10.25592/uhhfdm.14241. 

 

FIGURE 8:RESULTS OF THE 2D STEADY HEAT CONDUCTION USING A DIRAC SOURCE (3.2.1.2). 
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3.2.1.3 Unsteady 2D Heat Transfer (FD/QCFD) 
Supplementing temporal changes in combination with cases studied above, the source-free governing equation 
reads  

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑡 − ∇4𝑢(𝑥, 𝑦, 𝑡) − 𝑓(𝑥, 𝑦, 𝑡) = 0,	 

with the initial conditions 𝑢(𝑥, 𝑦, 0) = 𝑢=  that follow from the checkerboard solution described in Sec. 3.2.1.1. 
Again, Dirichlet boundary conditions 𝑢 = 0 are employed (for all times) along the boundaries of a unit square 
domain discretized on a cartesian grid with 32	 × 32	v𝑛; × 𝑛Hw	 equidistantly spaced points ( Δ𝑥 = Δ𝑦 =
0.03125	[𝑚]). Mind that only the first ten time steps were simulated with a fixed step size of Δ𝑦 = 0.1	[𝑠].  
FD results have been compiled and are supplemented by emulated quantum results and the complete dataset is 
available via the DOI 10.25592/uhhfdm.14241. 
Figure 9 and Figure 10 compare the results for the classical FD solution (right) and a variational quantum solution 
(left) at time 𝑡 = 0.0	[𝑠] and 𝑡 = 0.9	[𝑠], respectively, on a regular 32 × 32	v𝑛; × 𝑛Hw lattice. The 𝑥-, 𝑦-axes show 
the number of grid points, whereby the color indicates the corresponding temperature.  

 

FIGURE 9: RESULTS 2D UNSTEADY HEAT CONDUCTION (3.2.2.) AT 𝒕 = 𝟎	[𝒔] (3.2.1.3). 

 
FIGURE 10: RESULTS 2D UNSTEADY HEAT CONDUCTION (3.2.2) AT 𝒕 = 𝟎. 𝟗	[𝒔] (3.2.1.3). 

3.2.2 Unsteady Lid-driven and Doubly-driven Cavity (QCFD) 

The setup for the unsteady lid-driven cavity in two spatial dimensions is shown in Figure 11. We consider a square 
domain with edge length 𝐿 , and the upper lid moves with velocity 𝑢=  in the horizontal (𝑥 -) direction. The 𝑥 -
component (𝑦-component) of the fluid is denoted by 𝑢	(𝑣). At 𝑡 = 0	[𝑠], the fluid is at rest, 𝑢 = 𝑣 = 0	[𝑚/𝑠]. We 
consider a viscous fluid with kinematic viscosity 𝜈 and seek steady state solutions to the incompressible Navier-
Stokes equations in the stream-function-vorticity approach (cf. [6]). 

We scale time in units of 𝑡= = 𝐿/𝑢= , length in terms of 𝐿  and velocities by 𝑢= . Solutions to the Navier-Stokes 
equations are then characterized by the Reynolds number 𝑅𝑒	 = 	𝑢=𝐿/𝜈 which is assigned to 105 and 24 × 105	. 
The interior of the cavity (excluding boundaries) is discretized by a uniform cartesian grid with 𝑁6 grid points in each 
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spatial dimension. The computational domain thus comprises 𝑁64  equally spaced points with grid spacing ℎ	 =
	𝐿/(𝑁6 	+ 	1). The boundary conditions for 𝑢, 𝑣, and the stream function 𝜓	and for the lid-driven cavity are shown 
in Figure 11(b) for the single-driven lid and Figure 11(c) for the doubly-driven lids. In the former case, only the upper 
lid moves at constant velocity 𝑢= in the horizontal direction. In the latter case, the bottom lid also moves with an 
opposite constant velocity -𝑢= in the horizontal direction. Solutions are advanced in pseudo time towards steady 
state using an explicit, second-order accurate McCormack-scheme.  
 
The employed quantum inspired computational methodology has been published by [6]. The dataset for the QCFD 
results can be accessed via DOI 10.25592/uhhfdm.14235. Mind that the QCFD data has been carefully checked 
against literature reported classical results, cf. [6]. 

 

FIGURE 11: LID-DRIVEN AND DOUBLY-DRIVEN CAVITY-DRIVEN AND DOUBLY-DRIVEN CAVITY (3.2.3). 

 

Discretization:  cartesian, equidistant in space; equidistant in time 
Numerics:  FD (2nd-order central differences for diffusion, 2nd-order central differences for advection) 
Features:  2D non-linear convection-diffusion with Dirichlet boundary conditions  
Output:   𝑢(𝑥7 , 𝑦E), 𝑣(𝑥7 , 𝑦E), 𝜓(𝑥7 , 𝑦E), 𝜔(𝑥7 , 𝑦E) for the final tine step (at steady state) 

3.2.3  Curvilinear Coordinates and LES subsystem demonstrator (FD/QCFD) 

The investigations refer to the nonlinear convective transport in a non-rectangular 2D domain using boundary fitted 
curvilinear coordinates. Moreover, non-constant material properties are considered by the introduction of an 
algebraic eddy-viscosity model, that relates to the LES Smagorinsky model [8]. The main objective is to reproduce 
specific classical CFD results, rather than the correct modeling of turbulence physics. Broadening the basis for 
algorithmic development, the following benchmark case covers two governing equations (Passive Scalar Transport 
and Navier-Stokes). 

As an extension to Sec. 3.1.6 the first case is concerned with a two-dimensional passive scalar transport  

𝜕𝜙
𝜕𝑡 + 𝑢�⃗ ⋅ ∇𝜙 − Γ∇

4𝜙 = 0, 

for a prescribed velocity 𝑢	���⃗ = 0.5[cos(𝛼) , sin(𝛼)]B[𝑚/𝑠]. The Reynolds number in the (squared) computational 
domain reads 𝑅𝑒 = 𝑢𝐿/Γ = 500𝜋 , based on the length 𝐿 = 2𝜋  of the (computational) domain, the maximum 
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velocity magnitude 𝑢 = 0.5	[𝑚/𝑠] and a constant diffusion coefficient Γ = 0.002. We investigate the evolution of 
an initial Gaussian pulse 𝜙(𝑥, 𝑡=) = 𝐴	exp	{[(𝑥 − 𝑥=)4 + (𝑦 − 𝑦=)4]/𝐵} with 𝐴 = 1.0, 𝐵 = 0.2 and 𝑥= = 𝜋, 𝑦= = 𝜋, 
propagating in a physical domain with periodic boundary conditions along all boundaries. 

The problem is solved for four cases, i.e., 𝛼 ∈ [0°,45°,90°,140°]. A transfinite interpolation is used to relate a regular 
squared cartesian lattice < 𝜉, 𝜂 >		to the 2D curvilinear < 𝑥, 𝑦 >	physical domain and provide expressions for the 
cartesian spatial derivatives and metric contributions in a homogeneous computational domain. The computational 
domain is given by the square 𝜉 ∈ [0, 𝐿] × 𝜂 ∈ [0, 𝐿] , whereby the physical domain is described by 𝑥	 = 𝜉	 −
𝛼	𝑠𝑖𝑛(𝜉	 − 𝜂) and 𝑦 = 𝜂	 − 𝛼	𝑠𝑖𝑛(𝜉	 − 𝜂) . The computational domain is discretized by 100 × 	100 equidistantly 
spaced points, i.e., Δ𝜉 = Δ𝜂 = 0.01[𝑚]. The time horizon evolves from 0	[𝑠] to 10	[𝑠]. We employ constant time 
steps of Δ𝑡 = 0.05	[𝑠] to restrict the Courant numbers to 𝐶2 ≤ 1 and 𝐶I = 1. 

FD operators are employed to approximate the temporal, convective and diffusive derivatives. Central derivatives 
are used for all spatial derivatives and 1st-order backward formulae are used in time.  

The quantum-inspired strategy (or decomposition) is employed in a tensor network representation based upon a FD 
method for the differential operators, along with a corresponding relation to capture the metric terms between 
physical (non-rectangular) and computational (rectangular) domain.  

Results of the simulation with the prescribed velocity at 𝛼 = 140° are given in Figure 12. The FD- and QCFD-data are 
available via DOI 10.25592/uhhfdm.14169. 

 

FIGURE 12: SNAPSHOTS OF THE SCALAR FIELD FOR THE GAUSSIAN PULSE EVOLUTION WITH PRESCRIBED VELOCITY AT 𝜶 =
𝟏𝟒𝟎° FOR 0.1 [S] (A) AND 0.3 [S] (B) (3.2.3). 

 

In the second study, the application of tensor network methods to curvilinear geometries is extended to Navier 
Stokes simulations. The simulations employ a fluid viscosity of 𝜈 = 0.001	[𝑚4/𝑠] and a spatially variable algebraic 
eddy viscosity obtained from a Smagorinsky model [8] (𝑐J = 0.15).  
The physical domain and its discretization agree with the case described in Figure 12. The time horizon extents from 
0	[𝑠]	 to 10	[𝑠]	and the time step reads Δ𝑡 = 0.05	[𝑠]. The simulation employs periodic boundary conditions in the 
𝜉-direction and zero Dirichlet boundary conditions in the 𝜂-direction. As initial conditions a parabolic 𝜉velocity 
profile is employed along the 𝜂-axis across the whole domain. The maximum initial velocity 𝑢KL; at the channel 
centerline is given by the profile 𝑢(𝜂) = 	−1/𝜋4𝜂	(𝜂 − 2𝜋) and provides 𝑅𝑒 = 𝑢KL;𝐿/𝜈 ≈ 6200.  
The pressure is computed using a pressure projection approach to solve a pressure-Poisson equation. The physical 
domain is the same as in the case described in Figure 12. The solution is advanced in time using an explicit 4th-order 
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Runge-Kutta scheme. The dynamic time step is adaptively chosen to maintain small Courant numbers well below 1. 
In line with the first application, spatial derivatives are all approximated by central differences. 

Figure 13 displays results of the study for the velocity (a), pressure (b) and the divergence of the velocity (c). The FD-
data, complementary to the QCFD results, is available at 10.25592/uhhfdm.14169. 

 

FIGURE 13: VELOCITY (MAGNITUDE), PRESSURE AND DIVERGENCE OF THE VELOCITY WITHIN THE CHANNEL FLOW SIMULATION 
(3.2.3). 

 

Discretization:  curvilinear, equidistant in computational domain 
Numerics:  FD (2nd-order central differences in space, 4th-order explicit in time) 
Features:  2D, nonlinear convection-diffusion transport for momentum and pressure  
Output:   𝑢v𝑥7 , 𝑦E , 𝑡8w, 𝑣v𝑥7 , 𝑦E , 𝑡8w, 𝑝(𝑥7 , 𝑦7 , 𝑡8), 𝑥7 , 𝑦E , 𝑡8 

3.2.4 Double-Bent Channel (FV) 

The double-bent channel demonstrates a more practical heat transfer problem. Results included in D1.1 cover two 
generic heat exchanger cases featuring different flow regimes, laminar and (modeled) turbulent flows. 

The case consists of a rectangular cross section and is bent follows an “S” shape. The 2D curvilinear domain is one 
meter long and the height of the bent reads 2𝛿 = 0.05	[𝑚]. The height of the fluid wetted domain refers to delta 𝛿 
and covers the lower half of the configuration, cf. Figure 14. On top of the fluid partition, an identical partition of 
solid copper is considered. The inlet velocity of the flow is set to 1	[𝑚/𝑠]. The material properties for the fluid (ρ=
1.2	[𝑘𝑔/𝑚5] , 𝜇9 	= 	5.92 × 10MA[𝑘𝑔/𝑚𝑠], 𝑐6 = 1000	[𝐽/𝑘𝑔𝐾]	 ) and solid ( 𝜌 = 8880	[𝑘𝑔/𝑚5] , 𝜆 = 401	�𝑊/
𝑚 𝐾�, 𝑐6 = 386	[𝐽/𝑘𝑔𝐾]	) are constant over time.  

The three dimensionless similarity parameters describing the physics are: (1) the Reynolds number build with the 
channel half-height 𝑅𝑒 = 𝑢𝛿/𝜈 = 50 (laminar) and 𝑅𝑒 = 7375 (turbulent), (2) the Nusselt number 𝑁𝑢 = ℎ𝐿/𝑘 ≈
3.45	 (constant for all case) and (3) the Prandtl number Pr = 𝜈𝜌𝑐6/𝜆 = 0.7 (constant for all cases), which describes 
the relation between the kinematic viscosity and the thermal diffusivity. The latter essentially addresses the ratio 
between the momentum and thermal boundary layer thicknesses. 

The configuration is illustrated in Figure 14. The exterior channel walls are mostly assigned to zero temperature 
gradient conditions for the energy equation. Exceptions refer to the coolant/fluid inlet (300	𝐾 Dirichlet condition) 
and the heated lower part of the upper horizontal copper boundary (500	𝐾 Dirichlet condition).  
No-slip conditions (zero Dirichlet cond.) are used for the velocities along lower s-Bent exterior walls and the internal 
cooper/fluid interface. The flow enters the channel with a constant horizontal velocity of 1	[𝑚/𝑠] (and a related 
ambient temperature of 300	𝐾). The fluid outlet refers to a zero-gradient condition for the velocities (and the 
temperature).  
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FIGURE 14: SCHEMATIC OF THE TWO-PHASE HEAT TRANSFER IN AN S-BENT PIPE AND BOUNDARY CONDITIONS (3.2.4). 

A k-e RANS turbulence closure model together with a universal wall function approach is used to mimic the influence 
of turbulence for high Reynolds number case [9]. 

Both flows are resolved on structured grids, which discretize the fluid and solid domains. To assess the grid resolution 
a discretization study has been performed using a coarse (6 260 cells), a mid (35 040 cells), a fine (100 160 cells) and 
an extra fine (400 640 cells) discretization. For all the cases, and in contrast to the regular grid for the solid domain, 
the fluid grid is refined from the centerline towards the walls by the factor 𝛽 = 0.2, viz Δ𝑦7:9 = βΔ𝑦7 	.  
The coarse grid discretizes the solid domain using 1260 cells with the spacing of Δ𝑥 = 0.016	[𝑚] × Δ𝑦 =
0.0025	[𝑚] resulting in 63 streamwise cells and 20 cells in channel height. The fluids domain is approximated using 
5000 cells related to a base size for the largest cells of Δ𝑥 = 0.008	[𝑚] × Δ𝑦 = 0.001875	[𝑚]. The total number of 
5000 fluids cells, separates into 125 cells in streamwise direction and in 40 cells for the opposite section. The finer 
grid (mid) employs a base size for the largest cells of Δ𝑥 = 0.00267	[𝑚] × Δ𝑦 = 0.0009375	[𝑚]	 for the fluid 
domain and a fixed size of Δ𝑥 = 0.008	[𝑚] × Δ𝑦 = 0.00125	[𝑚]	for the solid domain. It features 126 (solid) & 350 
(fluid) cells in streamwise direction and 40 (solid) & 80 (fluid) cells along the domain height. Accordingly, the fluid 
domain is discretized with 28 000 cells and the solid domain with 5 040 cells. The (fine) discretization employs 80 
000 fluid cells and 20 160 solid cells. The fluids base size is set to	Δ𝑥 = 0.002	[𝑚] × Δ𝑦 = 0.000469	[𝑚] and the 
solids base size to Δ𝑥 = 0.004	[𝑚] × Δ𝑦 = 0.000625	[𝑚]. The finest grid is composed from Δ𝑥 = 0.001	[𝑚] ×
Δ𝑦 = 0.0002343	[𝑚]	for the finest fluid cells (320 000 fluid cells) and Δ𝑥 = 0.002	[𝑚] × Δ𝑦 = 0.0003125	[𝑚]	for 
the solid cells (80 640 solid cells). The four discretizations are displayed in Figure 15. 

   

    

FIGURE 15: DISCRETIZATIONS EMPLOYED IN THE MESH STUDY FOR THE DOUBLE BENT PIPE CASE, FROM LEFT TO RIGHT/TOP TO 
BOTTOM – COARSE TO EXTRA FINE (A TO D) (3.2.4). 
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For the computation the FV method is established as using cell centered discretization. Integrals of the FV method 
are approximated using a second-order accurate mid-point rule. Diffusive fluxes are approximated using 2nd-order 
accurate central differences and convective fluxes employ a centered linear scheme. To assess the convergence of 
the discretization the total pressure loss along the channels center line is analyzed. The results are given in Table 4 
and indicate the mesh independence of the computed flow. 

Discretization (Cells) Total Pressure Loss 𝚫𝒑	[𝑷𝒂] 
Reynolds Number 𝑅𝑒 = 50	 𝑅𝑒 = 7347 

Coarse (6 260) 4.74705 × 10M5 3.97777 × 10MA  
Mid (35 040) 4.80524 × 10M5 4.12331 × 10MA  

Fine (100 160) 4.72851 × 10M5 4.12331 × 10MA  
Extra Fine (400 640) 4.617750 × 10M5 4.13059 × 10MA  

TABLE 4: MESH SENSITIVITY STUDY: DOUBLE BENT CHANNEL FLOW. 

For each of the combination of 𝑅𝑒 and discretization the velocity, pressure, temperature fields at steady state and 
the gird are available via DOI 10.25592/uhhfdm.14199. Different Reynolds numbers or discretizations are indicated 
in the repository according to the above given order. A more realistic representative fully industrial application, e.g., 
BEV cooling example, is given in Sec.3.3.2. 

Discretization:  curvilinear, non-equidistant structured grid in space; steady 
Numerics:  FV (2nd-order central differences for diffusion, a centered linear scheme for advection) 
Features:  2D, turb./lam. nonlinear convection-diffusion with conjugate heat transfer & real. bound. cond.  
Output:   𝑢v𝑥7 , 𝑦Ew, 𝑣v𝑥7 , 𝑦Ew, 𝑝v𝑥7 , 𝑦Ew, 𝑇v𝑥7 , 𝑦Ew, 𝑘v𝑥7 , 𝑦Ew, 𝜖v𝑥7 , 𝑦Ew, 𝑥7 , 𝑦E for the solid and the fluid 
domains 
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3.3 3D Applications 

The last set of applications, that the QCFD consortium has selected for future comparisons with QCFD methods, 
contemplates 3D CFD solutions, i.e., a Taylor-Green vortex (TGV), a 3D periodic channel flow (PCF) and a battery 
pack cooling scenario.   
The description for the TGV case is given in Ref. [5]. It generally follows the classical TGV test case and the data 
obtained by a quantum-inspired framework is available via DOI 10.25592/uhhfdm.14233.  

The remainder of this document describes the channel flow and battery cooling cases. The complexity of both 
benchmarks is deliberately not set too high in order to correspond to the current state of QCFD and the 
corresponding hardware capabilities. Table 5 summarizes the 3D test cases and gives information on the main 
features and the simulation focus. The simulation focus refers to (1) turbulent flow simulation, (2) turbulence 
modeling - either based on scale-resolving Large Eddy Simulations (LES) or two-equation models for Reynolds-
averaged Navier-Stokes (RANS) equations, (3) non-isotropic and non-homogeneous (curvilinear) meshes, and (4) 
complex internal flows with industrial relevance. The physical phenomena are described by steady or unsteady 
convection-diffusion (CD/uCD) governed by the Navier-Stokes equations (NS). 

3D Cases Eqn. Spatial Temporal # Eqn. non/linear Flow # Grids Num. Focus Ind. Relev. 
Taylor-Green [5] uCD 3D unsteady 4 nonlinear Turb./DNS 2 FD+Q (1) 25% 

Periodic Channel uCD 3D unsteady 4 nonlinear Turb./LES 3 FV (1,2,3) 50% 

Gen. Battery Pack CD 3D steady 6 nonlinear Turb./TM 3 FV (1,3,4) 90% 

           

TABLE 5: SUMMARY OF SELECTED 3D CASES (3.3). 

3.3.1 Periodic Channel Flow (FV) 

The period channel flow is an often-performed benchmark to study the interaction of walls and turbulence. Existing 
studies cover a broad range of Reynolds numbers, including the lower Reynolds numbers studied in the landmark 
papers [10, 11].   
In line with these studies, the geometry is chosen to be a rectangular channel 4𝜋𝛿 × 2𝛿 × 	2𝜋𝛿, where 𝛿 refers to 
the channel half-height, cf. Figure 16. In the investigated geometry 𝛿 is equal to unity, i.e., 1	[𝑚]. The discretization’s 
topology is similar to Ref. [10], and subject to a grid sensitivity study outlined below. Simulations are conducted for 
four laminar and two turbulent flow regimes, specified by the bulk Reynolds numbers 𝑅𝑒N 	= 	𝛿𝑢N/𝜈 =
[150, 300, 600, 1200	, 3300, 7890]	, 𝑢N	where denotes the spatially averaged velocity aka. bulk velocity. The fluids 
properties are set to 𝜈 = 2 × 10MO	[𝑠/𝑚4], 𝜌 = 1	[𝑘𝑔/𝑚5].  
Periodic boundary conditions are employed in the streamwise (𝑥) primary direction and the spanwise (𝑧) lateral 
direction. Wall boundaries in 𝑦-direction correspond to stationary no-slip walls. 

 

FIGURE 16: SCHEMATIC OF THE PERIODIC CHANNEL FLOW 
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For the larger Reynolds numbers 𝑅𝑒N ≥ 3300, a turbulence model is added to the systems of equations providing 
and approximation to the unresolved sub-grid scales. Here, we employ the LES model by Smagorinsky [8] with the 
coefficients 𝑐P = 1.048 and 𝑐8 = 0.094. Mind that, no specific wall model is introduced to adjust to the near wall 
regime, and the flow is described with the algebraic Smagorinsky eddy-viscosity model in the entire domain. This is 
certainly debatable from a physical point of view. However, the project does not aim to supplement the rich body 
of outstanding existing channel simulation data available in literature, rather to provide a database for the 
comparison of QCFD and CFD.   
The flow is therefore driven by a prescribed momentum source in the streamwise (𝑥) direction which follows from 
constant mass flux (𝜌𝑢N𝐴 = ∫ 𝜌𝑢	𝑑𝐴!"'#% ). Initial conditions are set to constant inflow axial velocities 𝑢N. A large 
simulation time 𝑇 = 150 ⋅ (4𝜋𝛿)/𝑢N [s] is computed to guarantee the full transition of the flow from the initial 
transient phase into the periodic phase. 

Results were obtained from a cell-centered FV scheme. Integrals are approximated using a 2nd-order accurate mid-
point rule. The time derivatives are discretized using an implicit 1st-order Euler scheme. Diffusive fluxes follow from 
2nd-order accurate central differences and a centered linear scheme for the approximation of convection fluxes. 
Pressure information is recovered using a semi-implicit method for pressure linked equations (SIMPLE). The three 
discretization levels account for 30 720 cells 60 000 cells, and 100 800 cells. All the grids are depicted in Figure 17. 
For all the case the discretizations are refined from the centerline to the wall by the factor 𝛽 = 0.125, viz Δ𝑦7 =
βΔ𝑦7:9	. The grid characteristics is assessed with the non-dimensional inner coordinate of the first interior cell 

centroid, i.e., 𝑦9: = 𝜌𝑢Q𝑦9/𝜈 using an empirical wall shear-stress velocity 𝑢Q = ¦
Q"
R
.	Therein, an empirical value for 

the wall-shear stress 𝜏S was used for laminar flows [11, 12, 13], viz. 𝜏S = 	6𝜌𝑢N4/𝑅𝑒N. For the turbulent regime, 
Deans’ correlation was applied to specify the wall shear 𝜏S = 0.073𝑅𝑒N

M9/A 9
4
𝜌𝑢N4 [12]. This yields 𝑦9: values 

between 𝑦9: ∈ [1.1, 2.1] for the lowest Re number and 𝑦9: ∈ [2.4, 4.5] for the largest Re number for the three 
grids.  

      

 

FIGURE 17: DISCRETIZATIONS EMPLOYED IN THE MESH STUDY FOR THE PERIODIC CHANNEL FLOW, FROM LEFT TO RIGHT/TOP 
TO BOTTOM – COARSE TO FINE (3.3.1). 

The coarsest discretization (coarse) is recovered using a base 𝑥-spacing of 0.2617	[𝑚], a 𝑦-spacing of 0.1452	[𝑚] 
and a 𝑧-spacing of 0.314	[𝑚]. It employs 48 × 32 × 20 cells, respectively. With the refinement towards the nonslip 
boundaries the discretization covers the near wall behavior up to a 𝑦9: = 2.08	(𝑅𝑒 = 150)	or 𝑦9: = 4.46 (𝑅𝑒 =
7890 ) ( 𝑦 -direction). The medium discretization (mid) has a base mesh of Δ𝑥 × Δ𝑦 × Δ𝑧 = 0.31415	[𝑚] ×
0.09364	[𝑚] × 0.2094	[𝑚]  and consists of 40 × 	50 × 30  cells resulting in 𝑦9: = 	1.34	 for 𝑅𝑒 = 150  and 𝑦9: =
2.88	for 𝑅𝑒 = 7890. The finest discretization (fine) employs 48 × 	60 × 35 cells with a base mesh size of Δ𝑥 =
0.2618	[𝑚], Δ𝑦 = 0.0783[𝑚] and Δ𝑧 = 0.17940	[𝑚]. With the refinement towards the walls, the 𝑦9: values in wall 
normal direction are between 𝑦9: = 1.12 and 𝑦9: = 2.4, for the above given minimum and maximum Reynolds 
numbers, respectively. In 𝑧-direction all of the cases fulfill a 𝑧9: ≤ 50	. 

The boundary layer displacement thickness is defined as the integral of the normalized velocity deviation over the 
half channel height, viz. 𝛿∗ = ∑ (1 − 𝑢/𝑢N)V

H<= 	.To analyze the quality of the discretizations, the boundary layer 
displacement thickness at the middle of the channel’s centerline is evaluated. Therefore, the time averaged 𝑥-
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component of the velocity along the line (0, 𝑠, 0) ∶ 𝑠 ∈ [0, 𝛿] is used. The quantitative results for 18 cases, covering 
all Reynolds numbers for the three discretizations (coarse, mid, fine), are listed in Table 6. 

Reynolds Number Displacement Thickness 𝜹∗[𝒎] 
Discretizations/Cells Coarse /30,720 Mid / 60,080 Fine / 100,000 

𝑹𝒆 = 𝟏𝟓𝟎 0.3333 0.3337 0.3338 
𝑹𝒆 = 𝟑𝟎𝟎 0.3333 0.3337	 0.3338	 
𝑹𝒆 = 𝟔𝟎𝟎 0.3309 0.3323	 0.3338 
𝑹𝒆 = 𝟏𝟐𝟎𝟎 0.3142	 0.3210	 0.3175 
𝑹𝒆 = 𝟑𝟑𝟎𝟎 0.3259	 0.3172	 0.2982 
𝑹𝒆 = 𝟕𝟖𝟗𝟎 0.3083	 0.2937 0.2387	 

TABLE 6: GRID SENSITIVITY STUDY: PERIODIC CHANNEL FLOW (3.3.1). 

Mind that when Dean’s correlation of centerline and bulk velocities is analyzed (viz. 𝑢2/𝑢N ≈ 1.16	(𝑅𝑒 = 7890)) 
[10], the simulation results deviate from the correlation data. This is due to the fact that no specific wall treatment 
is used, but should not detract from the verification study, cf. statement above. 

Following a successful verification, the QCFD model can be extended to higher complexity by advanced LES 
approaches (Van Driest, Cube-root Volume, Wall Adapting Local Eddy-viscosity (WALE), or other) or by employing a 
wall-function approach to cover the near wall behavior more accurately. For validation, the results for all 
combinations of Reynolds numbers and discretization are given. Access to the data is granted via DOI 
10.25592/uhhfdm.14195. 

Discretization:  non-equidistant structured grid in space; unsteady 
Numerics:  FV (2nd-order central differences for diffusion, centered linear scheme for convection) 
Features:  3D, turbulent, non-linear convection-diffusion with resolved turbulence content 
Output:   𝑢v𝑥7 , 𝑦E , 𝑡8w, 𝑣v𝑥7 , 𝑦E , 𝑡8w, 𝑝v𝑥7 , 𝑦E , 𝑡8w, 𝜈@v𝑥7 , 𝑦E , 𝑡8w, 𝑥7 , 𝑦7 , 𝑡8 

3.3.2 Battery Pack Cooling (FV) 

The last case of D1.1 prepares to address a problem relevant to battery electric vehicles (BEVs) and the automotive 
industry, namely the thermal management of a battery pack. To this end, the following scenario recovers the fluid 
dynamic (momentum) problem within the cooling device of a battery pack thermal management system depicted 
in Figure 18 . 

 
FIGURE 18: SIMPLIFIED THERMAL MANAGEMENT SYSTEM FOR A BATTERY PACK (3.3.2). 
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The thermal management system of a battery pack is modelled with three regions: (1) coolant channel of 3	[𝑚𝑚] 
height filled with water, (2) aluminum plate of 4	[𝑚𝑚] thickness and (3) ten battery cells. This deliverable is confined 
to the pure momentum problem within the coolant channel of 𝑎 = 	3	[𝑚𝑚] height and 𝑏 = 12	[𝑚𝑚] width. The 
coolant takes the material properties of water (𝜌 = 996.57	[𝑘𝑔/𝑚5], 𝜇 = 8.53 × 10MA	[𝑚4/𝑠]). The flow enters the 
inlet, indicated by the blue arrow, and leaves the domain at the outlet (red arrow), cf. Figure 18. 

The data covers a laminar and turbulent flow case. The Reynolds number, defined with the hydraulic diameter of 
the rectangular cross section 𝐷F = 2𝑎𝑏/(𝑎 + 𝑏) and the bulk velocity 𝑢N , reads 𝑅𝑒 = 𝜌𝑢N𝐷F/𝜇 = 	560 for the 
laminar case and 𝑅𝑒 = 𝜌𝑢N𝐷F/𝜇 = 	11	240 for the turbulent flow case, respectively.  
Computed results were obtained from a cell centered FV scheme. Integrals are approximated using a second-order 
accurate mid-point rule. The time derivatives are discretized using an implicit 1st-order Euler scheme. Diffusive fluxes 
follow from 2nd-order accurate central differences and a centered linear scheme for the approximation of convection 
fluxes. Pressure is obtained from a semi-implicit method for pressure linked equations (SIMPLE). The turbulent flow 
simulations utilize a linear two-equation eddy-viscosity (RANS) model, i.e., the 𝑘 − 𝜔 SST model [14].  
To assess the grid quality, again three different structured-grid discretizations have been assessed. The basis of the 
fine grid consists 400 × 	200 × 	10 cells and a cell size of Δ𝑥 = 0.75	[𝑚𝑚] × Δ𝑦 = 0.75	[𝑚𝑚] × Δ𝑧 = 0.75	[𝑚𝑚]. 
This basis is successively coarsened in each direction by factor µ(2) to obtain a mid-size and a coarse grid basis. 
Moreover, three near-wall layers are added to each mesh, where the fluid adjacent employs a height of 30% of the 
base size and refines with factor 0.75 towards the wall. The sensitivity study thereby employs a coarse grid (197,478 
cells), a mid-size grid (386,328 cells) and a fine grid (914,040 cells). A closeup view on important regions of the 
discretization is given in Figure 19. 

 

FIGURE 19: DISCRETIZATIONS EMPLOYED IN THE MESH STUDY FOR THE BATTERY COOLING CASE, LEFT TO RIGHT - COARSE TO 
FINE (3.3.2). 

To quantify the grid sensitivity the total pressure loss between inlet and outlet was computed, cf. Table 7. Minor 
variations of the total pressure loss confirm the reliability by the given discretizations. The data is available online 
via DOI 10.25592/uhhfdm.16639. 

Within D2.1. it is planned to extend this application by conjugate heat transfer simulations, cf. Sec 3.2.4, to assess a 
complete 3D battery cooling scenario. 

Discretization / Cells Total Pressure Loss 𝚫𝒑	[𝑷𝒂]  
Reynolds Number 𝑅𝑒 = 560	(	𝜇9) 𝑅𝑒 = 11240	(𝜇4) 

Coarse/ 197,478 28.69	 3049.6	 
Mid/ 386,328 28.15	 3094.8  
Fine / 914,040 28.33  3077.7	 

TABLE 7: MESH SENSITIVITY STUDY: COOLANT PLATE IN A BATTERY PACK 

Discretization:  non-equidistant structured grid in space with refinement layers; steady 
Numerics:  FV (2nd-order central differences for diffusion, a linear central scheme for convection) 
Features:  3D, turbulent, nonlinear convection-diffusion with realistic geometry, and boundary conditions  
Output:   𝑢v𝑥7 , 𝑦Ew, 𝑣v𝑥7 , 𝑦Ew, 𝑝v𝑥7 , 𝑦Ew, 𝑘v𝑥7 , 𝑦Ew, 𝜔v𝑥7 , 𝑦Ew, 𝑥7 , 𝑦E 	 
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