Quantum Algorithm for the Advection-Diffusion Equation with Optimal Success Probability

Paul Over, Sergio Bengoechea, Peter Brearley, Sylvain Laizet, Thomas Rung. A quantum algorithm for simulating multidimensional scalar transport problems using a time-marching strategy is presented. After discretization, the explicit time-marching operator is separated into an advection-like component and a corrective shift operator. The advection-like component is mapped to a Hamiltonian simulation problem and is combined with the shift operator through…

Landscape approximation of low energy solutions to binary optimization problems

Benjamin Y.L. Tan, Beng Yee Gan, Daniel Leykam, and Dimitris G. Angelakis. We show how the localization landscape, originally introduced to bound low energy eigenstates of disordered wave media and many-body quantum systems, can form the basis for hardware efficient quantum algorithms for solving binary optimization problems. Many binary optimization problems can be cast as finding low-energy eigenstates of Ising…
AncoraThemes © 2025. All Rights Reserved.

QCFD © 2025. All Rights Reserved. PRIVACY POLICY

European Union Flag

The QCFD (Quantum Computational Fluid Dynamics) project is funded under the European Union’s Horizon Programme (HORIZON-CL4-2021-DIGITAL-EMERGING-02-10), Grant Agreement 101080085 QCFD.