Unsupervised learning of quantum many-body scars using intrinsic dimension

Harvey Cao, Dimitris G. Angelakis, Daniel Leykam.

Quantum many-body scarred systems contain both thermal and non-thermal scar eigenstates in their spectra. When these systems are quenched from special initial states which share high overlap with scar eigenstates, the system undergoes dynamics with atypically slow relaxation and periodic revival. This scarring phenomenon poses a potential avenue for circumventing decoherence in various quantum engineering applications. Given access to an unknown scar system, current approaches for identification of special states leading to non-thermal dynamics rely on costly measures such as entanglement entropy. In this work, we show how two dimensionality reduction techniques, multidimensional scaling and intrinsic dimension estimation, can be used to learn structural properties of dynamics in the PXP model and distinguish between thermal and scar initial states. The latter method is shown to be robust against limited sample sizes and experimental measurement errors.

Leave a comment

AncoraThemes © 2024. All Rights Reserved.

QCFD © 2024. All Rights Reserved. PRIVACY POLICY

European Union Flag

The QCFD (Quantum Computational Fluid Dynamics) project is funded under the European Union’s Horizon Programme (HORIZON-CL4-2021-DIGITAL-EMERGING-02-10), Grant Agreement 101080085 QCFD.