Variational Quantum Algorithms for Computational Fluid Dynamics

Dieter Jaksch, Peyman Givi, Andrew J. Daley, Thomas Rung. Quantum computing uses the physical principles of very small systems to develop computing platforms which can solve problems that are intractable on conventional supercomputers. There are challenges not only in building the required hardware, but also in identifying the most promising application areas and developing the corresponding quantum algorithms. The availability…

Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep reinforcement learning

Francesco Preti, Michael Schilling, Sofiene Jerbi, Lea M. Trenkwalder, Hendrik Poulsen Nautrup, Felix Motzoi, Hans J. Briegel. Shortening quantum circuits is crucial to reducing the destructive effect of environmental decoherence and enabling useful algorithms. Here, we demonstrate an improvement in such compilation tasks via a combination of using hybrid discrete-continuous optimization across a continuous gate set, and architecture-tailored implementation. The…
AncoraThemes © 2025. All Rights Reserved.

QCFD © 2025. All Rights Reserved. PRIVACY POLICY

European Union Flag

The QCFD (Quantum Computational Fluid Dynamics) project is funded under the European Union’s Horizon Programme (HORIZON-CL4-2021-DIGITAL-EMERGING-02-10), Grant Agreement 101080085 QCFD.